Строение газообразных, жидких и твёрдых тел - презентация. Газообразные тела Строение твердых жидких и газообразных тел таблица

При определенных условиях вся материя на планете Земля присутствует в одном из трех состояний: в газообразном, в жидком или в твердом. Существует также четвертое состояние материи, которое называется плазма. Рассмотрим вопрос строения газообразных, жидких и твердых тел, а также переход их из одного состояния в другое при изменении внешних условий.

Твердое состояние материи

Твердые тела характеризуются способностью оказывать сопротивление внешним силам, которые на них воздействуют с целью изменения их формы и объема. Рассматривая вопрос о строении газообразных, жидких и твердых тел и останавливаясь на последних, нужно сказать, что молекулы в них прочно соединены друг с другом. Поэтому объект обладает конкретной формой, которую он сохраняет при неизменных внешних условиях.

Молекулы в твердом теле могут находиться в упорядоченном состоянии, тогда говорят о кристаллической структуре. Либо могут находиться в неупорядоченном состоянии, тогда речь идет об аморфных твердых телах. Ярким примером кристаллической решетки является структура металлических систем, которая в пространстве образует идеальную решетку конкретного типа, в узлах которой находятся ионы атомов. Примером твердого объекта с аморфной структурой является стекло.

Науки о твердой материи

Твердые тела изучает несколько наук, к которым относятся следующие:

  • Физика конденсированного вещества. Она изучает твердую и жидкую материю, размеры которой превышают 10 19 частиц, используя при этом экспериментальные и теоретические методы.
  • Механика деформаций. Эта наука изучает механические свойства твердых тел, такие как напряжения в них, деформации упругие и пластические, а также связь этих свойств с термодинамическими внешними параметрами. При этом дисциплине неважно строение самого твердого вещества.
  • Наука о материалах. Она изучает уже строение молекул твердых, жидких и газообразных тел, а также фазовые переходы между этими состояниями.
  • Химия твердого состояния. Эта дисциплина специализируется на синтезе новых материалов в твердом состоянии.

Некоторые свойства твердых тел

При постоянном давлении и относительно низких температурах вещество находится в твердом состоянии. Воздействие небольшой внешней силы на твердое состояние не приводит к внешне различимой деформации твердого тела.

Если увеличивать силу, то тело начнет упруго деформироваться. При еще большем увеличении внешнего воздействия возможны два варианта:

  1. Если тело представляет собою металл, то оно начнет испытывать пластическую деформацию, то есть в его форме произойдут существенные изменения, которые останутся после прекращения внешнего воздействия.
  2. Если тело имеет аморфную структуру, либо кристаллическую структуру, но в узлах решетки будут находиться ионы разных знаков, например, кристалл поваренной соли NaCl, то тело не будет пластически деформироваться, а просто разрушится.

Каждое твердое тело характеризуется определенной плотностью. Самым легким веществом этой категории является аэрогель, его плотность составляет 3 кг/м 3 . Самым же плотным твердым материалом, известным человечеству, является металл - осмий. Один метр кубический осмия обладает массой 22 600 кг.

Металлические материалы

Особой группой твердых тел являются чистые металлы и их сплавы. Отличие в этом случае в строении твердых тел от газообразных и жидких состояний вещества заключается в существовании пространственной периодической решетки, которая называется кристаллической решеткой.

Благодаря кристаллической структуре металлы обладают рядом важнейших свойств, например, пластичностью и дифракцией. Практически все они существуют в трех основных кристаллических решетках:

  • гранецентрированная кубическая, например, Au, Ag, Al, Cu;
  • объемно-центрированная кубическая, например, Nb, Mo, W, Fe;
  • гексагональная плотно упакованная, например, Ti, Zr.

Для изучения особенностей кристаллических решеток разработана наука кристаллография.

Конденсированное состояние вещества - жидкость

Жидкое состояние так же, как и твердое является несжимаемым, то есть сохраняет свой объем в значительном диапазоне давлений. Однако жидкость не сохраняет своей формы, что ее отличает от твердого тела и сближает с газообразным состоянием вещества.

Если в образовании твердых тел действуют молекулярные и атомные силы, то жидкость образована молекулами, которые соединены друг с другом только молекулярными слабыми силами. Самой распространенной на Земле является вода, которая, как и газ, может принимать форму сосуда, в который она помещена.

Если говорить о строении газообразных, жидких и твердых тел, то следует упомянуть, что жидкость, в отличие от газа, не изменяет свою плотность, когда ее помещают в какой-либо закрытый сосуд.

Особенности, присущие только жидкостям

Для каждой жидкости, благодаря наличию в ней молекулярных сил, присущи такие свойства, как поверхностное натяжение и капиллярный эффект. Если вещество находится в поле тяжести, например, нашей Земли, то любое помещенное в нее тело будет выталкиваться из жидкости согласно знаменитому закону Архимеда.

Если же на жидкость не действует гравитация, то выталкивающая сила будет равна нулю. Кроме того, в отсутствии внешних сил веществ в таком состоянии стремится приобрести наименьшую площадь поверхности, уменьшая тем самым полную энергию. Именно поэтому в условиях невесомости капли воды имеют сферическую форму, так как шар является фигурой с наименьшей площадью поверхности для этого объема жидкости.

Капиллярные свойства объясняются способностью молекул вступать в связи не только друг с другом, но и с атомами и молекулами других тел. Эти физические характеристики жидкости называются когезия и адгезия, соответственно.

Говоря кратко о строении газообразных, жидких и твердых тел, следует упомянуть свойство вязкости, которое присуще жидкому и газообразному состоянию. Под вязкостью понимается способность сопротивляться какому-либо смещению слоев вещества относительно друг друга при наличии градиента давления. Для жидкостей этот показатель зависит от скорости смещения этих слоев, температуры и молекулярной массы. Чем выше скорость движения тела в жидкости, чем больше молекулярная масса частиц жидкости, и чем ниже температура, тем больше вязкость.

Строение газов

Газом называется такое состояние материи, когда составляющие ее частицы не связаны какими-либо силами друг с другом либо эти силы очень слабы. Поэтому такие вещества свободно изменяют объем и форму, заполняя весь сосуд, в который их помещают. Это различие в строении газообразных тел от жидких и твердых приводит к тому, что они имеют меньшую плотность. В случае газообразного состояния воды принято вести речь о паре.

В реальных газах не существует абсолютного беспорядка. Однако молекулы в нем движутся настолько быстро, что они практически не взаимодействуют между собой. Поэтому газ заполняет абсолютно любой объем, и молекулы в нем будут разделены относительно большими расстояниями в сравнении с размерами самих молекул. Из-за большой дистанции между молекулами газы легко сжимаются, увеличивая при этом свою плотность и внутреннее давление.

Идеальный газ

В физике благодаря созданию моделей строения твердых, жидких и газообразных тел возникают некоторые разумные упрощения реальных состояний материи, которые позволяют использовать более простой математический аппарат для изучения этих состояний. Одной из таких моделей стала концепция идеального газа.

Под этим термином понимается газообразное состояние вещества, в котором молекулы имеют точечные размеры в сравнении с расстояниями между ними, и в котором они не взаимодействуют между собой.

При нормальных условиях, то есть при атмосферном давлении и комнатной температуре, большинство реальных газов могут рассматриваться, как идеальные. Например, азот, кислород, водород, благородные газы, углекислый газ и другие.

Уравнение состояния для идеального газа выглядит следующим образом:

P * V = n * R * T, где:

P, V, T и n - давление, объем, температура и количество вещества газа, соответственно,

R = 8,31 Дж/(моль*К) - универсальная постоянная.

Плазма - четвертое состояние вещества

При рассмотрении строения газообразных, жидких и твердых тел в 10 классе также уделяют внимание еще одному состоянию материи - плазме, которая представляет собой газ, состоящий из катионов и анионов, то есть из положительно и отрицательно заряженных частиц. Ярким примером плазмы является вещество, из которого состоит наше солнце.

По ряду свойств плазма похожа на газ, отличие заключается лишь в том, что она способна реагировать на магнитные поля, а также проводить электрический ток. Получить плазму можно разогревая до высоких температур газ, так как при этом индуцируются столкновения между молекулами, что приводит к их частичной или полной ионизации.

Изменение состояния вещества

В физике 10 класса строение газообразных, твердых и жидких тел рассматривается вместе с переходами между этими состояниями. Переходы между состояниями веществ возможны за счет изменения давления и температуры. Изменения происходят только в физическом строении газообразных, жидких и твердых телах, а их химический состав остается постоянным.

Возможны следующие переходы между различными состояниями материи:

  • Плавление. Эндотермический процесс перехода из твердого состояния в жидкое.
  • Кристаллизация. Экзотермический процесс, при котором жидкость становится твердым телом во время ее охлаждения.
  • Кипение. Физический эндотермический процесс, при котором жидкость переходит в газ.
  • Конденсация. Экзотермический переход газа в жидкость.
  • Сублимация или возгонка. Эндотермический переход из твердого тела в газ, минуя жидкое состояние. Классическим примером является возгонка сухого льда.

Следует отметить, что все эндотермические и экзотермические процессы фазовых переходов идут с постоянной температурой вещества. Все эти процессы, существование которых обусловлено особенностями строения газообразных, жидких и твердых тел, являются энергетическими, то есть требуют либо подвод, либо отвод энергии во время их реализации.

Молекулярно - кинетическая теория дает возможность понять, почему вещество может находиться в разных агрегатных состояниях: газообразном, жидком и твердом.
Внешними отличительными чертами этих состояний являются сжимаемость (изменение объема) и текучесть (сохранение формы).
С точки зрения молекулярно-кинетической теории, агрегатные состояния различаются по значению среднего расстояния между молекулами и характеру движения молекул друг относительно друга.
Увеличивая температуру газа при фиксированном давлении, можно получить частично, а затем полностью ионизованную плазму, которую часто считают четвертым состоянием вещества. С увеличением давления вещество может перейти в пятое - нейтронное - состояние, которое реализуется в природе в виде нейтронных звезд.
На основе МКТ рассмотрим различия и сходства теплового движения частиц газов, жидкостей и твердых тел.
Газы - это тела, в которых молекулы почти свободно хаотически двигаются в промежутках между столкновениями, во время которых резко меняется характер их движения. Согласно МКТ молекулы газа находятся друг от друга на расстояниях, превышающих размер самих молекул в несколько раз. В этом случае силы притяжения уже малы, поэтому, участвуя в хаотичном движении, молекулы газа могут удаляться на любое расстояние. Газ занимает объем сосуда любых размеров. Его можно существенно сжать под действием внешних сил.
Например, объем сосуда может в десятки тысяч раз превышать объем находящихся в нем молекул.
Газы легко сжимаются, если уменьшается среднее расстояние между молекулами, но форма молекулы не изменяется. Молекулы, двигаясь в пространстве с огромными скоростями - сотни метров в секунду, сталкиваются, затем отскакивают друг от друга в разные стороны подобно бильярдным шарам. Слабые силы притяжения молекул газа не способны удержать их друг возле друга.
Поэтому газы могут неограниченно расширяться. Они не сохраняют ни формы, ни объема.
Многочисленные удары молекул о стенки сосуда создают давление газа. Примером этому может служить воздушный шарик. Его невозможно надуть с одной стороны. Газ или воздух в шарике распространяется по всему объему.
Как можно судить о концентрации молекул внутри шарика? Чем больше газа внутри шарика, тем он плотнее накачан, т.е. становится более упругим.
Жидкости - это тела, образованные веществами, находящимися в состоянии, в котором не сохраняется форма тела под действием силы тяжести или небольшой нагрузки. Однако жидкость трудно сжимается даже под действием значительных сил.
Молекулы жидкости не образуют постоянной пространственной структуры; расположены друг от друга на расстояниях, сравнимых с размерами самих молекул, почти вплотную друг к другу, поэтому молекула жидкости ведет себя иначе, чем молекула газа. Характер движения этих молекул представляет собой множество колебаний относительно положения равновесия, в результате столкновения с соседними молекулами, т.е. временное оседлое положение, чередуется со скачками на новое оседлое положение.
В жидкостях существует так называемый ближний порядок, т. е. упорядоченное расположение молекул сохраняется на расстояниях, равных нескольким молекулярным диаметрам. Молекула колеблется около своего положения равновесия: здесь сила отталкивания равна силе притяжения, т. е. суммарная сила взаимодействия молекулы равна нулю. Время оседлой жизни молекулы воды: время ее колебаний около одного определенного положения равновесия при комнатной температуре, равно в среднем 10-11 с. Время же одного колебания значительно меньше 10-12-10-13 с. С повышением температуры время оседлой жизни молекул уменьшается.
Характер молекулярного движения в жидкостях, впервые установил советский физик Яков Ильич Френкель. Результаты его работы позволяют понять основные свойства жидкостей.
Молекулы жидкости находятся непосредственно друг возле друга. При уменьшении объема силы отталкивания становятся очень велики. Этим и объясняется малая сжимаемость жидкостей.
Жидкости текучи, т. е. не сохраняют своей формы, так как внешняя сила заметно не меняет числа перескоков молекул в секунду. Но перескоки молекул из одного оседлого положения в другое происходят преимущественно в направлении действия внешней силы. Вот почему жидкость течет и принимает форму сосуда.
Твердое тело - это агрегатное состояние вещества, характеризующееся стабильностью формы при значительных нагрузках (сравнимых с воздействием сил тяжести) и тепловым движением атомов в виде малых колебаний вокруг положений равновесия (отсюда возникновение деформаций лишь при больших внешних силах). Кроме того, расстояние между молекулами сравнимо с размером самих молекул, и между ними при сжатии возникают силы отталкивания (отсюда несжимаемость твердых тел).
Атомы или молекулы твердых тел, в отличие от атомов и молекул жидкостей, колеблются около определенных положений равновесия. По этой причине твердые тела сохраняют не только объем, но и форму. Потенциальная энергия взаимодействия молекул твердого тела существенно больше их кинетической энергии.
Есть еще одно важное различие между жидкостями и твердыми телами. Жидкость можно сравнить с толпой людей, где отдельные личности беспокойно толкутся на месте, а твердое тело подобно той же толпе людей, которые хотя и не стоят по стойке смирно, но выдерживают между собой в среднем определенные расстояния. Если соединить центры положений равновесия атомов или ионов твердого тела, то получится правильная пространственная решетка, называемая кристаллической.
На рисунках изображены кристаллические решетки поваренной соли и алмаза. Внутренний порядок в расположении атомов кристаллов приводит к правильным внешним геометрическим формам.
Различают кристаллические и аморфные твердые тела.
В аморфных телах атомы колеблются вокруг хаотически расположенных точек, упорядоченность которых наблюдается лишь на расстояниях, сравнимых с межатомными.
В кристаллах периодичность в расположении этих точек наблюдается для сколь угодно отдаленных атомов.
С точки зрения МКТ эти свойства объясняются упорядоченным расположением атомов (молекул) в теле. Такое расположение длительное время не меняется.
Кристалл - это твердое тело, обладающее трехмерной периодической атомной или молекулярной структурой. Обычно такое тело имеет форму правильного симметричного многогранника. Крупные одиночные кристаллы называются монокристаллами. В природе встречаются монокристаллы различных размеров: от очень больших кристаллов кварца (до нескольких сотен килограммов) до мелких (россыпи кристаллов алмаза). Отличительной особенностью кристаллических тел является:
1) анизотропия монокристаллов (зависимость свойств от направления); например, если стеклянную банку положить, то её легко можно раздавить, встав на неё. Однако, если поставить банку, то она легко выдержит ваш вес;
2) наличие фиксированной температуры плавления.
Аморфное тело не имеет упорядоченной (кристаллической) структуры молекул, сохраняет форму только благодаря затрудненности перемещения молекул относительно друг друга.
При нагревании аморфное тело размягчается постепенно. Механические, тепловые и другие свойства одинаковы вдоль всех направлений такого тела.
Аморфное состояние характерно для молекул, имеющих большую длину по сравнению с поперечным размером самих молекул (органические полимеры, стекла). При продолжительном воздействии малой силы аморфные тела, как и жидкости, обнаруживают текучесть.

Молекулярно-кинетическая теория дает возможность понять, почему вещество может находиться в газообразном, жидком и твердом состояниях.

Газ. В газах расстояние между атомами или молекулами в средем во много раз больше размеров самих молекул (рис. 10). Например, при атмосферном давлении объем сосуда в десятки

тысяч раз превышает объем находящихся в сосуде молекул газа.

Газы легко сжимаются, так как при сжатии газа уменьшается лишь среднее расстояние между молекулами, но молекулы не «сдавливают» друг друга (рис. 11).

Молекулы с огромными скоростями - сотни метров в секунду - движутся в пространстве. Сталкиваясь, они отскакивают друг от друга в разные стороны подобно бильярдным шарам.

Слабые силы притяжения молекул газа не способны удержать их друг возле друга. Поэтому газы могут неограниченно расширяться. Они не сохраняют ни формы, ни объема.

Многочисленные удары молекул о стенки сосуда создают давление газа.

Жидкости. В жидкостях молекулы расположены почти вплотную друг к другу (рис. 12). Поэтому молекула в жидкости ведет себя иначе, чем в газе. Зажатая, как в клетке, другими молекулами, она совершает «бег на месте» (колеблется около положения равновесия, сталкиваясь с соседними молекулами). Лишь время от времени она совершает «прыжок», прорываясь сквозь «прутья клетки», но тут же попадает в новую «клетку», образованную новыми соседями. Время «оседлой жизни» молекулы воды, т. е. время колебаний около одного определенного положения равновесия, при комнатной температуре равно в среднем с. Время же одного колебания значительно меньше ( с). С повышением температуры время «оседлой жизни» молекул уменьшается. Характер молекулярного движения в жидкостях, впервые установленный советским физиком Я. И. Френкелем, позволяет понять основные свойства жидкостей.

Молекулы жидкости находятся непосредственно друг возле друга Поэтому при попытке изменить объем жидкости даже на малую величину начинается деформация самих молекул (рис. 13). А для этого нужны очень большие силы. Этим и объясняется малая сжимаемость жидкостей

Жидкости, как известно, текучи, т. е. не сохраняют своей формы. Объясняется это следующим. Если жидкость не течет, то перескоки молекул из одного «оседлого» положения в другое происходгт с одинаковой частотой по всем направлениям (рис. 12). Внешняя сила заметно не изменяет числа перескоков молекул в секунду, но перескоки молекул из одного «оседлого» положения в другое при этом происходят преимущественно в направлении действия внешней силы (рис. 14). Вот почему жидкость течет и принимает форму сосуда

Твердые тела. Атомы или молекулы твердых тел в отличие от жидкостей колеблются около определенных положений равновесия. Правда, иногда молекулы изменяют положение равновесия, но происходит это крайне редко. Вот почему твердые тела сохраняют не только объем, но и форму.

Есть еще одно важное различие между жидкостями и твердыми телами. Жидкость можно сравнить с толпой, отдельные члены которой беспокойно толкутся на месте, а твердое тело подобно стройной когорте, члены которой хотя и не стоят по стойке «смирно» (вследствие теплового движения), но выдерживают между собой в среднем определенные интервалы. Если соединить центры положений равновесия атомов или ионов твердого тела, то получится правильная пространственная решетка, называемая кристаллической. На рисунках 15 и 16 изображены кристаллические решетки поваренной соли и алмаза. Внутренний порядок в расположении атомов кристаллов приводит к геометрически правильным внешним формам. На рисунке 17 показаны якутские алмазы.

Качественное объяснение основных свойств вещества на основе молекулярно-кинетической теории, как вы видели, не является особенно сложным. Однако теория, устанавливающая количественные соотношения между измеряемыми на опыте величинами (давлением, температурой и др.) и свойствами самих молекул, их числом и скоростью движения, весьма сложна. Мы ограничимся рассмотрением теории газов.

1. Приведите доказательства существования теплового движения молекул.

2. Почему броуновское движение заметно лишь у частиц малой массы?

3. Какова природа молекулярных сил? 4. Как силы взаимодействия между молекулами зависят от расстояния между ними? 5. Почему два свинцовых бруска с гладкими чистыми срезами слипаются, если их прижать друг к другу? 6. В чем состоит различие теплового движения молекул газов, жидкостей и твердых тел?


Молекулярно-кинетическая теория дает возможность понять, почему вещество может находиться в газообразном, жидком и твердом состояниях.

Газ. В газах расстояние между атомами или молекулами в средем во много раз больше размеров самих молекул (рис. 10). Например, при атмосферном давлении объем сосуда в десятки

тысяч раз превышает объем находящихся в сосуде молекул газа.

Газы легко сжимаются, так как при сжатии газа уменьшается лишь среднее расстояние между молекулами, но молекулы не «сдавливают» друг друга (рис. 11).

Молекулы с огромными скоростями - сотни метров в секунду - движутся в пространстве. Сталкиваясь, они отскакивают друг от друга в разные стороны подобно бильярдным шарам.

Слабые силы притяжения молекул газа не способны удержать их друг возле друга. Поэтому газы могут неограниченно расширяться. Они не сохраняют ни формы, ни объема.

Многочисленные удары молекул о стенки сосуда создают давление газа.

Жидкости. В жидкостях молекулы расположены почти вплотную друг к другу (рис. 12). Поэтому молекула в жидкости ведет себя иначе, чем в газе. Зажатая, как в клетке, другими молекулами, она совершает «бег на месте» (колеблется около положения равновесия, сталкиваясь с соседними молекулами). Лишь время от времени она совершает «прыжок», прорываясь сквозь «прутья клетки», но тут же попадает в новую «клетку», образованную новыми соседями. Время «оседлой жизни» молекулы воды, т. е. время колебаний около одного определенного положения равновесия, при комнатной температуре равно в среднем с. Время же одного колебания значительно меньше ( с). С повышением температуры время «оседлой жизни» молекул уменьшается. Характер молекулярного движения в жидкостях, впервые установленный советским физиком Я. И. Френкелем, позволяет понять основные свойства жидкостей.

Молекулы жидкости находятся непосредственно друг возле друга Поэтому при попытке изменить объем жидкости даже на малую величину начинается деформация самих молекул (рис. 13). А для этого нужны очень большие силы. Этим и объясняется малая сжимаемость жидкостей

Жидкости, как известно, текучи, т. е. не сохраняют своей формы. Объясняется это следующим. Если жидкость не течет, то перескоки молекул из одного «оседлого» положения в другое происходгт с одинаковой частотой по всем направлениям (рис. 12). Внешняя сила заметно не изменяет числа перескоков молекул в секунду, но перескоки молекул из одного «оседлого» положения в другое при этом происходят преимущественно в направлении действия внешней силы (рис. 14). Вот почему жидкость течет и принимает форму сосуда

Твердые тела. Атомы или молекулы твердых тел в отличие от жидкостей колеблются около определенных положений равновесия. Правда, иногда молекулы изменяют положение равновесия, но происходит это крайне редко. Вот почему твердые тела сохраняют не только объем, но и форму.

Есть еще одно важное различие между жидкостями и твердыми телами. Жидкость можно сравнить с толпой, отдельные члены которой беспокойно толкутся на месте, а твердое тело подобно стройной когорте, члены которой хотя и не стоят по стойке «смирно» (вследствие теплового движения), но выдерживают между собой в среднем определенные интервалы. Если соединить центры положений равновесия атомов или ионов твердого тела, то получится правильная пространственная решетка, называемая кристаллической. На рисунках 15 и 16 изображены кристаллические решетки поваренной соли и алмаза. Внутренний порядок в расположении атомов кристаллов приводит к геометрически правильным внешним формам. На рисунке 17 показаны якутские алмазы.

Качественное объяснение основных свойств вещества на основе молекулярно-кинетической теории, как вы видели, не является особенно сложным. Однако теория, устанавливающая количественные соотношения между измеряемыми на опыте величинами (давлением, температурой и др.) и свойствами самих молекул, их числом и скоростью движения, весьма сложна. Мы ограничимся рассмотрением теории газов.

1. Приведите доказательства существования теплового движения молекул.

2. Почему броуновское движение заметно лишь у частиц малой массы?

3. Какова природа молекулярных сил? 4. Как силы взаимодействия между молекулами зависят от расстояния между ними? 5. Почему два свинцовых бруска с гладкими чистыми срезами слипаются, если их прижать друг к другу? 6. В чем состоит различие теплового движения молекул газов, жидкостей и твердых тел?

Вся неживая материя состоит из частиц, поведение которых может отличаться. Строение газообразных, жидких и твердых тел имеет свои особенности. Частицы в твердых телах удерживаются вместе, так как расположены очень тесно друг к другу, это делает их очень прочными. Кроме того, они могут держать определенную форму, так как их мельчайшие частицы практически не двигаются, а только вибрируют. Молекулы в жидкостях находятся довольно близко друг к другу, однако они могут свободно передвигаться, поэтому собственной формы они не имеют. Частицы в газах движутся очень быстро, вокруг них, как правило, много пространства, что предполагает их легкое сжатие.

Свойства и строение твердых тел

Какова структура и особенности строения твердых тел? Они состоят из частиц, которые расположены очень близко друг к другу. Они не могут перемещаться, и поэтому их форма остается фиксированной. Каковы свойства твердого тела? Оно не сжимается, но если его нагреть, то его объем будет увеличиваться с ростом температуры. Это происходит потому, что частицы начинают вибрировать и двигаться, что приводит к уменьшению плотности.

Одной из особенностей твердых тел является то, что они имеют неизменную форму. Когда твердое тело нагревается, средняя скорость движения частиц увеличивается. Быстрее движущиеся частицы сталкиваются более яростно, заставляя каждую частицу толкать своих соседей. Следовательно, повышение температуры обычно приводит к повышению прочности тела.

Кристаллическое строение твердых тел

Межмолекулярные силы взаимодействия между соседними молекулами твердого тела достаточно сильны, чтобы держать их в фиксированном положении. Если эти мельчайшие частицы находятся в высокоупорядоченной комплектации, то такие структуры принято называть кристаллическими. Вопросами внутренней упорядоченности частиц (атомов, ионов, молекул) элемента или соединения занимается специальная наука — кристаллография.

Химическое строение твердого тела также вызывает особый интерес. Изучая поведение частиц, того, как они устроены, химики могут объяснить и предсказать, как определенные виды материалов будут себя вести при определенных условиях. Мельчайшие частицы твердого тела расположены в виде решетки. Это так называемое регулярное расположение частиц, где немаловажное значение играют различные химические связи между ними.

Зонная теория строения твердого тела рассматривает твердое вещество как совокупность атомов, каждый их которых, в свою очередь, состоит из ядра и электронов. В кристаллическом строении ядра атомов находятся в узелках кристаллической решетки, для которой характерна определенная пространственная периодичность.

Что такое структура жидкости?

Строение твердых тел и жидкостей схоже тем, что частицы, из которых они состоят, находятся на близком расстоянии. Различие состоит в том, что молекулы жидкого вещества свободно перемещаются, так как сила притяжения между ними гораздо слабее, нежели в твердом теле.

Какими же свойствами обладает жидкость? Во-первых, это текучесть, во-вторых, жидкость будет принимать форму контейнера, в который ее помещают. Если ее нагреть, объем будет увеличиваться. Из-за близкого расположения частиц друг к другу жидкость не может быть сжата.

Какова структура и строение газообразных тел?

Частицы газа располагаются случайным образом, они находятся так далеко друг от друга, что между ними не может возникнуть сила притяжения. Какими свойствами обладает газ и каково строение газообразных тел? Как правило, газ равномерно заполняет все пространство, в которое он был помещен. Он легко сжимается. Скорость частиц газообразного тела увеличивается вместе с ростом температуры. При этом происходит также повышение давления.

Строение газообразных, жидких и твердых тел характеризуется разными расстояниями между мельчайшими частицами этих веществ. Частицы газа находятся гораздо дальше друг от друга, чем в твердом или жидком состоянии. В воздухе, например, среднее расстояние между частицами примерно в десять раз превышает диаметр каждой частицы. Таким образом, объем молекул занимает всего около 0,1 % от общего объема. Остальные 99,9 % составляет пустое пространство. В противоположность этому частицы жидкости заполняют около 70 % общего объема жидкости.

Каждая частица газа движется свободно по прямолинейному пути, пока она не столкнется с другой частицей (газа, жидкости или твердого тела). Частицы обычно движутся достаточно быстро, а после того как две из них сталкиваются, они отскакивают друг от друга и продолжают свой путь в одиночку. Эти столкновения меняют направление и скорость. Эти свойства газовых частиц позволяют газам расширяться, чтобы заполнить любую форму или объем.

Изменение состояния

Строение газообразных, жидких и твердых тел может меняться, если на них оказывается определенное внешнее воздействие. Они могут даже переходить в состояния друг друга при определенных условиях, например в процессе нагревания или охлаждения.

Поведение тел в разных физических состояниях

Строение газов, жидкостей, твердых тел главным образом обусловлено тем, что все эти вещества состоят из атомов, молекул или ионов, однако поведение этих частиц может быть совершенно разным. Частицы газа хаотичным образом удалены друг от друга, молекулы жидкости находятся близко друг к другу, но они не так жестко структурированы, как в твердом теле. Частицы газа вибрируют и передвигаются на высоких скоростях. Атомы и молекулы жидкости вибрируют, перемещаются и скользят мимо друг друга. Частицы твердого тела также могут вибрировать, но движение как таковое для них не свойственно.

Особенности внутренней структуры

Для того чтобы понять поведение материи, нужно сначала изучить особенности ее внутренней структуры. Каковы внутренние различия между гранитом, оливковым маслом и гелием в воздушном шарике? Простая модель структуры материи поможет найти ответ на этот вопрос.

Модель является упрощенным вариантом реального предмета или вещества. Например, до того как начинается непосредственное строительство, архитекторы сначала конструируют модель строительного проекта. Такая упрощенная модель не обязательно предполагает точное описание, но в то же время она может дать приблизительное представление того, что будет собой представлять та или иная структура.

Упрощенные модели

В науке, однако, моделями не всегда выступают физические тела. За последнее столетие наблюдался значительный рост человеческого понимания о физическом мире. Однако большая часть накопленных знаний и опыта основана на чрезвычайно сложных представлениях, например в виде математических, химических и физических формул. Для того чтобы разобраться во всем этом, нужно быть достаточно хорошо подкованным в этих точных и сложнейших науках. Ученые разработали упрощенные модели для визуализации, объяснения и предсказания физических явлений. Все это значительным образом упрощает понимание того, почему некоторые тела имеют постоянную форму и объем при определенной температуре, а другие могут их менять и так далее.

Вся материя состоит из мельчайших частиц. Эти частицы находятся в постоянном движении. Объем движения связан с температурой. Повышенная температура свидетельствует об увеличении скорости движения. Строение газообразных, жидких и твердых тел отличается свободой передвижения их частиц, а также тем, насколько сильно частицы притягиваются друг к другу. Физические свойства вещества зависят от его физического состояния. Водяной пар, жидкая вода и лед имеют одинаковые химические свойства, но их физические свойства значительно отличаются.

Loading...Loading...