Фуллерен кристаллическая решетка. Фуллерен, его производство, свойства и применение

Статья на конкурс «био/мол/текст»: Поиск соединений, способных продлить жизнь и отодвинуть старость - одна из самых актуальных задач современной науки. Сообщение о том, что исследователям из Франции удалось добиться почти двукратного увеличения продолжительности жизни экспериментальных животных при помощи фуллеренов (наночастиц углеродной природы), заставило ученых задуматься над молекулярными механизмами подобного эффекта. Эта статья повествует о компьютерном моделировании возможных механизмов биологической активности фуллеренов и о первых попытках подтвердить полученные модели в биологических экспериментах.

Мячи для нанофутболистов

Физики и химики нашли фуллеренам множество применений: их используют при синтезе новых соединений в оптике и при производстве проводников. О биологических же свойствах фуллеренов долгое время поступали неоднозначные данные: биологи то объявляли их токсичными , то обнаруживали антиоксидантные свойства фуллеренов и предлагали использовать их в лечении таких серьезных заболеваний, как бронхиальная астма .

Крысы-долгожители

В 2012 году увидела свет публикация, которая привлекла внимание геронтологов - специалистов, работающих над проблемами старения. В этой работе Тарек Баати и соавторы продемонстрировали впечатляющие результаты - крысы, которых кормили суспензией фуллеренов в оливковом масле, жили вдвое дольше обычных, и, к тому же, демонстрировали повышенную устойчивость к действию токсических факторов (таких как четыреххлористый углерод). Токсичность этого соединения обусловлена его способностью генерировать активные формы кислорода (АФК) , а значит, биологические эффекты фуллеренов, скорее всего, можно объяснить их антиоксидантными свойствами (способностью «перехватывать» и дезактивировать АФК).

Подробно об этом «биомолекула» уже рассказывала: « » . - Ред.

Связь активных форм кислорода с процессами, происходящими при старении, в настоящее время уже практически не подвергается сомнению. С 60-х годов ХХ века, когда была сформулирована свободнорадикальная теория старения , и до настоящего времени объем данных, подтверждающих такую точку зрения, только накапливается. Однако до сих пор ни один антиоксидант - ни природный, ни синтетический - не давал столь поразительного увеличения продолжительности жизни экспериментальных животных, как в опытах Баати и коллег. Даже специально сконструированные коллективом под руководством академика Скулачева антиоксиданты «адресного действия» - так называемые «ионы Скулачева », или соединения ряда SkQ, - демонстрировали менее значительные эффекты .

Эти вещества представляют собой липофильные положительно заряженные молекулы с присоединенным антиоксидантным «хвостом», которые благодаря своей структуре способны накапливаться в митохондриях (именно в этих органоидах эукариотических клеток происходит генерация активных форм кислорода). Однако соединения ряда SkQ продлевали жизнь подопытных мышей в среднем всего на 30%.

Рисунок 2. Продление жизни подопытных мышей. Слева - мышь, старение которой замедлено благодаря приему «ионов Скулачева», справа - мышь из контрольной группы.

Почему же фуллерены оказались столь эффективными в борьбе со старением?

Задавшись этим вопросом, мы стали рассматривать возможность существования дополнительного механизма биологического действия фуллеренов - кроме уже известного антиоксидантного. Подсказка обнаружилась при изучении одного из соединений ряда SkQ-SkQR1, содержащего остаток родамина. Это соединение относится к группе протонофоров - молекул, способных переносить протоны из межмембранного пространства через мембрану в матрикс митохондрии, снижая, таким образом, трансмембранный потенциал (Δψ). Как известно, именно этот потенциал, существующий благодаря разнице в содержании протонов по разные стороны мембраны, и обеспечивает выработку энергии в клетке. Однако он же и является источником генерации АФК. В сущности, активные формы кислорода здесь сродни «токсическим отходам» при производстве энергии. Хотя они имеют и ряд полезных функций , в основном АФК - источник повреждения ДНК, липидов и многих внутриклеточных структур.

Есть сведения, что некоторое снижение митохондриального трансмембранного потенциала может быть полезным для клеток . Снижение его всего на 10% приводит к уменьшению продукции АФК в 10 раз ! Существуют так называемые «мягкие разобщители», повышающие протонную проводимость мембран, в результате чего происходит «разобщение» дыхания и фосфорилирования АТФ .

Пожалуй, самый известный «разобщитель» - DNF, или 2,4-динитрофенол (рис. 3а и 3б). В 30-е годы ХХ века им очень активно пользовались при лечении ожирения. Собственно, динитрофенол - первый «жиросжигатель», использовавшийся в официальной медицине. Под его действием клетка переключается на альтернативный путь метаболизма, запуская «сжигание» жиров, а получаемая клеткой энергия не запасается в АТФ, как обычно, а излучается в виде тепла.

Рисунок 3а. Схема строения митохондрии

Рисунок 3б. Перенос протонов органическими кислотами - «мягкими разобщителями» (слева ) - и динитрофенол - самый известный из «разобщителей» (справа )

Поиск легких способов похудения будет актуален всегда, пока представители Homo Sapiens будут беспокоиться о своем внешнем виде; однако для нашего исследования более интересен тот факт, что подобные «мягкие разобщители» снижают выработку АФК и в небольших дозах могут способствовать продлению жизни .

Возникает вопрос - а могут ли фуллерены, кроме антиоксидантных свойств, проявлять еще и свойства «переносчиков» протонов, действуя, таким образом, сразу с двух сторон? Ведь шарообразная молекула фуллерена - полая изнутри, а значит, в ней вполне могут уместиться небольшие частицы - такие как протоны.

Моделирование in silico : что сделали физики

Для проверки этой гипотезы коллективом НОЦ «Наноразмерная структура вещества» были выполнены сложные расчеты. Как и в истории с открытием фуллерена, в нашем исследовании компьютерное моделирование предшествовало экспериментам. Моделирование возможности проникновения протона в фуллерен и распределения заряда в такой системе производилось на основе теории функционала плотности (DFT). Это широко используемый инструмент квантово-химических расчетов, позволяющий вычислять свойства молекул с высокой точностью.

При моделировании один или несколько протонов помещали вне фуллерена, а затем производился расчет наиболее оптимальной конфигурации - такой, при которой полная энергия системы будет минимальной. Результаты расчетов показали: протоны могут проникать внутрь фуллерена! Оказалось, внутри молекулы C 60 может накапливаться до шести протонов одновременно, а вот седьмой и последующие уже не смогут проникнуть внутрь и будут отталкиваться - дело в том, что «заряженный» протонами фуллерен приобретает положительный заряд (а, как известно, одноименно заряженные частицы отталкиваются).

Происходит это потому, что проникающие внутрь фуллеренового «шарика» протоны оттягивают на себя электронные облака атомов углерода, что приводит к перераспределению заряда в системе «протоны+фуллерен». Чем больше протонов проникает внутрь, тем сильнее положительный заряд на поверхности фуллерена, тогда как протоны, напротив, все сильнее приближаются к нейтральным значениям. Эту закономерность можно проследить и на рисунке 4: когда количество протонов внутри сферы превышает 4, они становятся нейтральными (желто-оранжевый цвет), ну а поверхность фуллерена всё сильнее «синеет».

Рисунок 4. Распределение положительного заряда внутри системы «фуллерен+протоны». Слева направо: два, четыре или шесть протонов внутри фуллерена. Цветом обозначено распределение заряда: от нейтрального (красный ) до слабоположительного (синий ).

Вначале расчеты были выполнены только в системе «фуллерен+протоны» (без учета влияния других молекул). Но ведь в клетке фуллерен находится не в вакууме, а в водной среде, заполненной множеством соединений разной степени сложности. Поэтому на следующем этапе моделирования физики добавили к системе 47 молекул воды, окружающих фуллерен, и проверили, не повлияет ли их присутствие на взаимодействие с протонами. Однако и в присутствии воды модель действовала успешно.

Биологи подтверждают гипотезу?

Известие о том, что фуллерены могут адсорбировать протоны, да еще и приобретают при этом положительный заряд, вдохновило биологов. Похоже, что эти уникальные молекулы и вправду действуют сразу несколькими путями: инактивируют активные формы кислорода (в частности, гидроксильные радикалы, присоединяя их по многочисленным двойным связям ), адресно накапливаются в митохондриях благодаря своим липофильным свойствам и приобретенному положительному заряду, и, вдобавок ко всему, снижают трансмембранный потенциал, перенося протоны внутрь митохондрий, подобно другим «мягким разобщителям» дыхания и окислительного фосфорилирования.

Для изучения антиоксидантных свойств фуллеренов мы использовали систему экспресс-тестов на основе биолюминесцентных бактериальных биосенсоров. Биосенсоры в данном случае - генетически-модифицированные бактерии, способные улавливать повышение внутриклеточной генерации АФК и «сигнализировать» об этом исследователям. При создании биосенсоров в генóм одного из безвредных штаммов кишечной палочки Escherichia coli вводится искусственная конструкция, состоящая из генов люминесценции (свечения), поставленных под контроль специфических промоторов - регуляторных элементов, «включающихся» при повышении внутриклеточной генерации активных форм кислорода, или же при действии иных стресс-факторов - например, при повреждении ДНК. Стоит начать действовать на клетку таким стресс-фактором - бактерия начинает светиться, и по уровню этого свечения можно с достаточной точностью определить уровень повреждений.

Рисунок 5. Светящиеся бактерии на чашке Петри (слева ) и принцип действия биосенсоров (справа )

Такие модифицированные штаммы разрабатываются в ГосНИИ Генетики и широко применяются в генетической токсикологии при изучении механизмов действия излучений и окислительного стресса , действия антиоксидантов (в частности, SkQ1 ), а также для поиска новых перспективных антиоксидантов среди синтезируемых химиками веществ .

В нашем случае использование именно бактериальной модели обусловлено следующим: бактерии, как известно, относятся к прокариотам, и клетки их устроены проще, чем эукариотические. Процессы, происходящие в мембране митохондрий эукариот, у прокариот реализуются прямо в клеточной мембране; в этом смысле бактерии - «сами себе митохондрии». (Удивительное сходство строения этих органелл с бактериями даже послужило в свое время основой для так называемой симбиотической теории происхождения эукариот .) Следовательно, для изучения процессов, происходящих в митохондриях, подобная модель вполне подходит.

Первые же результаты показали, что водная суспензия фуллерена C 60 , для более эффективного растворения обработанная ультразвуком, при добавлении к культуре биосенсоров увеличивала их устойчивость к повреждению ДНК активными формами кислорода. Уровень таких повреждений в опыте был на 50–60% ниже, чем в контроле.

Кроме того, было зафиксировано снижение уровня спонтанной продукции супероксид-анион-радикала в клетках SoxS-lux штамма при добавлении суспензии C 60 . Особенностью этого штамма как раз и является связь уровня его свечения с количеством супероксид-анион-радикала. Именно такого эффекта следует ожидать от соединения, действующего по принципу «мягких разобщителей» - если снижается трансмембранный потенциал, то и АФК (в частности, супероксид) будут вырабатываться в меньших количествах.

Полученные результаты, конечно, весьма предварительны, и работы еще продолжаются, именно поэтому в подзаголовке данного раздела и стоит вопросительный знак. Время покажет, сможем ли мы со временем заменить его на уверенный восклицательный. Ясно одно - в ближайшее время фуллерены неизбежно окажутся в фокусе внимания научных коллективов, изучающих проблемы старения и занимающихся поиском геропротекторов - веществ, замедляющих старение. И кто знает, не станут ли эти крохотные «шарики» надеждой на продление столь короткой пока человеческой жизни?

Работа проводилась в лаборатории экспериментального мутагенеза и лаборатории промышленных микроорганизмов НИИ биологии ЮФУ, а также в НОЦ «Наноразмерная структура вещества», ЮФУ, под руководством проф. А.В. Солдатова. Основные результаты моделирования системы «фуллерен+протоны» и биологические эффекты описаны, соответственно, в работах , .

Литература

  1. Соколов В.И. и Станкевич И.В. (1993). Фуллерены - новые аллотропные формы углерода: структура, электронное строение и химические свойства. «Успехи химии» . 62б , 455;
  2. P. R. Buseck, S. J. Tsipursky, R. Hettich. (1992). Fullerenes from the Geological Environment . Science . 257 , 215-217;
  3. В космосе впервые обнаружен фуллерен . (2010). «Око планеты» ;
  4. Андриевский Г.В., Клочков В.К., Деревянченко Л.И. (2004). Токсична ли молекула фуллерена С 60 ? Или к вопросу: «Какой свет будет дан фуллереновым нанотехнологиям - Красный или все-таки зеленый?» . «Вся медицина в Интернете!» ;
  5. Ширинкин С.В., Чурносов М.И., Андриевский Г.В., Васильченко Л.В. (2009). Перспективы использования фуллеренов в качестве антиоксидантов в патогенетической терапии бронхиальной астмы. «Клиническая медицина» . 5 , 56–58;
  6. Tarek Baati, Fanchon Bourasset, Najla Gharbi, Leila Njim, Manef Abderrabba, et. al.. (2012). The prolongation of the lifespan of rats by repeated oral administration of fullerene . Biomaterials . 33 , 4936-4946;
  7. MARY K. MANIBUSAN, MARC ODIN, DAVID A. EASTMOND. (2007). Postulated Carbon Tetrachloride Mode of Action: A Review . Journal of Environmental Science and Health, Part C . 25 , 185-209;
  8. Алхимия «волшебной сажи» - перспективы применения фуллерена C 60 в медицине ;
  9. D. Harman. (1956). Aging: A Theory Based on Free Radical and Radiation Chemistry . Journal of Gerontology . 11 , 298-300;
  10. Vladimir Skulachev. (2005). How to Clean the Dirtiest Place in the Cell: Cationic Antioxidants as Intramitochondrial ROS Scavengers . IUBMB Life (International Union of Biochemistry and Molecular Biology: Life) . 57 , 305-310;
  11. V. N. Anisimov, L. E. Bakeeva, P. A. Egormin, O. F. Filenko, E. F. Isakova, et. al.. (2008). Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 5. SkQ1 prolongs lifespan and prevents development of traits of senescence . Biochemistry Moscow . 73 , 1329-1342;
  12. Активный кислород: друг или враг, или О пользе и вреде антиоксидантов ;
  13. Yuri N. Antonenko, Armine V. Avetisyan, Dmitry A. Cherepanov, Dmitry A. Knorre, Galina A. Korshunova, et. al.. (2011). Derivatives of Rhodamine 19 as Mild Mitochondria-targeted Cationic Uncouplers . J. Biol. Chem. . 286 , 17831-17840;
  14. F. F. Severin, I. I. Severina, Y. N. Antonenko, T. I. Rokitskaya, D. A. Cherepanov, et. al.. (2010). Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore . Proceedings of the National Academy of Sciences . 107 , 663-668;
  15. Скулачев В.П. Рассказы о биоэнергетике (2-е издание). М: «Молодая гвардия», 1982;
  16. Северин Ф.Ф. и Скулачёв В.П. (2009). Запрограммированная клеточная смерть как мишень борьбы со старением организма. «Успехи геронтол.» . 22 , 37–48;
  17. Grigory V. Andrievsky, Vadim I. Bruskov, Artem A. Tykhomyrov, Sergey V. Gudkov. (2009). Peculiarities of the antioxidant and radioprotective effects of hydrated C60 fullerene nanostuctures in vitro and in vivo . Free Radical Biology and Medicine . 47 , 786-793;
  18. Yao Xiao, Mark R. Wiesner. (2012). Characterization of surface hydrophobicity of engineered nanoparticles . Journal of Hazardous Materials . 215-216 , 146-151;
  19. G.B. Zavilgelsky, V.Yu. Kotova, I.V. Manukhov. (2007). Action of 1,1-dimethylhydrazine on bacterial cells is determined by hydrogen peroxide . Mutation Research/Genetic Toxicology and Environmental Mutagenesis . 634 , 172-176;
  20. Празднова Е.В., Севрюков А.В., Новикова Е.В. (2011). Детекция сырой нефти при помощи бактериальных Lux-биосенсоров. . 4 , 80–83;
  21. Празднова Е.В., Чистяков В.А., Сазыкина М.А., Сазыкин И.С., Кхатаб З.С. (2012). Перекись водорода и генотоксичность ультрафиолетового излучения с длиной волны 300–400 нм. «Известия ВУЗов. Северо-Кавказский регион. Естественные науки» . 1 , 85–87;
  22. Чистяков В.А., Празднова Е.В., Гутникова Л.В., Сазыкина М.А., Сазыкин И.С. (2012). Супероксидустраняющая активность производного пластохинона - 10-(6′-пластохинонил) децилтрифенилфосфония (SkQ1). «Биохимия» . 77 , 932–935;
  23. Олудина Ю.Н., Сазыкина М.А., Празднова Е.В., Сазыкин И.С., Хмелевцова Л.Е., Бухаров С.В. и др. (2014). Синтез модифицированных пространственно-затрудненных фенолов и исследование их способности защищать ДНК бактерий от повреждения ультрафиолетом B . «Химико-фармацевтический журнал» . 12 ;
  24. Кулаев И.С. (1998). Происхождение эукариотических клеток . «Соросовский образовательный журнал». 5 , 17–22;
  25. V. A. Chistyakov, Yu. O. Smirnova, E. V. Prazdnova, A. V. Soldatov. (2013). Possible Mechanisms of Fullerene C60Antioxidant Action . BioMed Research International . 2013 , 1-4;
  26. Prazdnova E.V., Chistyakov V.A., Smirnova Yu.O., Soldatov A.V., Alperovich I.G. (2013). Possible mechanisms of fullerene C60 antioxidant action. II German-Russian Interdisciplinary Workshop «Nanodesign: Physics, Chemistry and Computer modeling» . 23.

Фуллерены - это молекулярные соединения, принадлежащие классу аллотропных модификаций углерода, имеющие замкнутые каркасные структуры, состоящие из трех координированных атомов углерода и имеющих 12 пятиугольных и (n/2 - 10) шестиугольных граней (n≥20). Особенностью является то, что каждый пятиугольник соседствует только с шестиугольниками .

Наиболее устойчивую форму имеет С 60 (бакминстерфуллерен), сферическая полая структура которого состоит из 20 гексагонов и 12 пентагонов.

Рисунок 1. Структура С 60

Молекула C 60 представляет собой атомы углерода, связанные друг с другом ковалентной связью. Данная связь обусловлена обобществлением валентных электронов атомов. Длина связи С−С в пентагоне равна 1,43 Ǻ, как и длина стороны гексагона, объединяющей обе фигуры, однако, сторона, соединяющая гексагоны, составляет приблизительно 1,39 Ǻ .

В определенных условиях молекулы С 60 имеют свойство упорядочиваться в пространстве, они располагаются в узлах кристаллической решетки, иными словами, фуллерен образует кристалл, называемый фуллеритом. Чтобы молекулы С 60 систематично разместились в пространстве, как и их атомы, они должны связаться между собой. Данная связь между молекулами в кристалле обусловлена наличием слабой ван-дер-ваальсовой силы. Это явление объясняется тем, что в электрически нейтральной молекуле отрицательный заряд электронов и положительный заряд ядра рассредоточены в пространстве, в следствии чего молекулы способны поляризовать друг друга, иными словами, они приводят к смещению в пространстве центров положительного и отрицательного зарядов, что обуславливает их взаимодействие .

Твердый C 60 при комнатной температуре имеет гранецентрированную кубическую решетку, плотность которой составляет 1,68 г/см 3 . При температуре ниже 0° С происходит трансформация в кубическую решетку.

Энтальпия образования фуллерена-60 составляет около 42,5 кДж/моль. Данный показатель отображает его малую стабильность, по сравнению с графитом (0 кДж/моль) и алмазом (1,67 кДж/моль). Стоит отметить, что с увеличением размеров сферы (по мере увеличения количества атомов углерода) энтальпия образования асимптотически стремится к энтальпии графита, это объясняется тем, что сфера все больше напоминает плоскость.

Внешне фуллерены представляют собой мелкокристаллические порошки черного цвета, не имеющие запаха. Они практически нерастворимы в воде (H 2 O), этаноле (C 2 H 5 OH), ацетоне (C 3 H 6 O) и других полярных растворителя, зато в бензоле (C 6 H 6), толуоле (C 6 H 5 −CH 3), фенилхлориде (C 6 H 5 Cl) растворяются образуя окрашенные в красно-фиолетовый цвет растворы. Стоит отметить, что при добавлении капли стирола (C 8 H 8) к насыщенному раствору C 60 в диоксане (C 4 H 8 O 2), происходит мгновенное изменение окраски раствора с желто-коричневого окраса на красно-фиолетовую, в связи с образованием комплекса (сольвата).

В насыщенных растворах ароматических растворителей фуллерены при низких температурах образует осадок - кристаллосольват вида C 60 ·Xn, где в качестве X выступают бензол (C 6 H 6), толуол (C 6 H 5 −CH 3), стирол (C 8 H 8), ферроцен (Fe(C 5 H 5) 2) и другие молекулы.

Энтальпия растворения фуллерена в большинстве растворителей положительна, при увеличении температуры растворимость, как правило, ухудшается .

Исследование физических и химических свойств фуллерена является актуальным явлением, так как данное соединение все прочнее входит в нашу жизнь. В настоящее время обсуждаются идеи использования фуллеренов в создании фотоприемников и оптоэлектронных устройств, катализаторов роста, алмазных и алмазоподобных пленок, сверхпроводящих материалов, а также в качестве красителей для копировальных машин. Фуллерены применяются в синтезе металлов и сплавов с улучшенными свойствами.

Фуллерены планируются в использовании в основе производства аккумуляторных батарей. Принцип действия данных батарей основан на реакции гидрирования, они во многом аналогичны широко распространенным аккумуляторам на основе никеля, однако, в отличие от последних, обладают способностью запасать в несколько раз больше удельного количества водорода. Кроме того, подобные батареи обладают более высокой эффективностью, малым весом, а также экологической и санитарной безопасностью по сравнению с наиболее продвинутыми в отношении этих качеств литийными аккумуляторами. Фуллереновые аккумуляторы могут найти широкое применение для питания персональных компьютеров и слуховых аппаратов.

Значительное внимание уделяется проблеме использования фуллеренов в области медицины и фармакологии. Рассматривается идея создания противораковых медицинских препаратов, основой которых будут являться водорастворимые эндоэдральные соединения фуллеренов с радиоактивными изотопами.

Однако, применение фуллеренов ограничивается их высокой стоимостью, которая обусловлена трудоемкостью синтеза фуллереновой смеси, а также многостадийным выделением из нее отдельных компонентов.

По материалам www.fullwater.com.ua

"ФУЛЛЕРЕН - МАТРИЦА ЖИЗНИ... "

Итак, в отличие от хорошо известных форм углерода - алмаза и графита, фуллерен – это молекула , состоящая из атомов углерода. Наиболее важный представитель семейства фуллеренов С60, состоит из 60 атомов углерода. Действительно мы не можем сказать “молекула алмаза” или графита, это всего лишь кристаллические формы с определенным пространственным расположением атомов углерода в решетке. Фуллерен – это единственная молекулярная форма углерода.

Природа объединила в одном объекте многие противоречивые понятия.

Фуллерен представляет собой связующее звено между органической и неорганической материей. Это и молекула, и частица, и кластер. Диаметр молекулы С60 равняется 1 нм, что соответствует границе дисперсности пролегающей между “истинным”, молекулярным и коллоидным состоянием веществ.

Если заглянуть внутрь фуллерена, то мы обнаружим только пустоту, пронизанную электромагнитными полями. Другими словами, мы увидим некое полое пространство, диаметром около 0,4 нм, содержащее “ничто” - вакуум , заключенный в углеродную оболочку, как в своеобразный контейнер. Причем стенки этого контейнера не позволяют проникновению внутрь него каких-либо материальных частиц (ионов, атомов, молекул). А само же полое пространство, как бы часть космоса, скоре есть нечто , чем ничто способно участвовать в тонких, информационных взаимодействиях с внешней материальной средой. Молекулу фуллерена можно назвать “вакуумным пузырьком”, для которого не подходит общеизвестный тезис о том, что природа не терпит пустоты. Вакуум и материя – две основы мироздания гармонично объединились в одной молекуле.

Еще одно замечательное свойство фуллеренов – это его взаимодействие с водой. Известно, что кристаллическая форма не растворима в воде. Многие попытки получить водные растворы фуллеренов приводят к образованию коллоидных или грубодисперсных систем фуллерен – вода, в которых частицы содержат большое количество молекул в кристаллической форме. Получение водных молекулярных растворов кажется невозможным. А иметь такой раствор очень важно и в первую очередь для использования их в биологии и медицине. Еще со времени открытия фуллеренов была предсказана его высокая биологическая активность. Однако общепринятое мнение о гидрофобности фуллеренов направило усилия многих ученых на создание водорастворимых производных или солюбилизированных форм. При этом к молекуле фуллерена пришиваются различные гидрофильные радикалы или окружают их водорастворимыми полимерами и поверхностно активными веществами, благодаря которым молекулы фуллеренов “заставляют” удерживаться в водной среде. Во многих работах была обнаружена их высокая биологическая активность . Однако любые изменения во внешней углеродной оболочке приводят к нарушению электронной структуры и симметрии молекулы фуллерена, что, в свою очередь меняет специфичность её взаимодействие со средой. Поэтому биологический эффект искусственно трансформированных молекул фуллерена во многом зависит от природы пришитых радикалов и содержащихся солюбилизаторов и примесей. Наиболее яркую индивидуальность молекулы фуллеренов проявляют в немодифицированном виде и, в частности, их молекулярные растворы в воде.

Полученные водные растворы фуллеренов являются устойчивыми во времени (более 2х лет), обладают неизменными физико-химическими свойствами и постоянным составом. В этих растворах отсутствуют какие либо токсичные примеси. В идеале это только вода и фуллерен. Причем фуллерен, встроенный в естественную многослойную структуру воды, где первый слой воды прочно связан с поверхностью фуллерена за счет донорно-акцепторных взаимодействий между кислородом воды и акцепторными центрами на поверхности фуллерена.

Комплекс такой крупной молекулы с водой обладает и значительной буферной емкостью. Вблизи ее поверхности сохраняется значение рН = 7,2 –7,6, такое же значение рН имеется вблизи поверхности мембран основной части здоровых клеток организма. Многие процессы “болезни” клетки сопровождаются изменением значения рН вблизи поверхности её мембраны. При этом больная клетка не только сама себе создает некомфортные условия, но и отрицательно влияет на соседей. Гидратированный фуллерен, находясь вблизи поверхности клетки, способен сохранять её здоровое значение рН. Тем самым, создаются благоприятные условия для того, чтобы клетке самой справиться со своим недугом.

И самое замечательное свойство гидратированного фуллерена – это его способность нейтрализовать активные радикалы . Антиоксидантная активность фуллерена в 100 – 1000 превышает действие известных антиоксидантов (например витамин Е, дибунол, b -каротин). Причем гидратированный фуллерен не подавляет естественного уровня свободных радикалов в организме а становится активным лишь в условиях повышения их концентрации. И чем больше образуется свободных радикалов в организме, тем активнее гидратированный фуллерен их нейтрализует. Механизм антиоксидантного действия фуллерена принципиально отличается от действия известных, применяемых в практике антиоксидантов. Так, для нейтрализации одного радикала необходима одна молекула традиционного антиоксиданта. А одна молекула гидратированного фуллерена способна нейтрализовать неограниченное количество активных радикалов. Это своего рода антиоксидант-катализатор. Причем, сама молекула фуллерена не участвует в реакции, а является лишь структурообразующим элементом водного кластера. ...

Еще в начале прошлого века академиком Вернадским было замечено, что живая материя характеризуется высокой симметрией. В отличие от неорганического мира многие организмы обладают осью симметрии пятого порядка. Фуллерен С60 имеет 6 осей пятого порядка, это единственная молекула в природе, обладающая столь уникальной симметрией. Еще до открытия фуллеренов были известны молекулярные структуры некоторых белков по форме напоминающих фуллерен, подобные структуры имеют и некоторые вирусы и иные, жизненно важные биологические структуры (например). Интересно соответствия молекулы фуллерена и его минимального кластера вторичной структуре ДНК . Так размер молекулы С60 соответствует расстоянию между тремя парами комплиментарных оснований в ДНК, т.н. кодону, который задает информацию для образования одной аминокислоты синтезируемого белка. Расстояние между витками спирали ДНК равно 3,4 нм., такой же размер имеет первый сферический кластер С60,состоящий из 13 молекул фуллеренов.

Известно, что углерод, а особенно графит и аморфный углерод обладают способностью адсорбировать на своей поверхности простейшие молекулы, в том числе и те, что могли бы являться материалом для образования более сложных биологически важных молекул в процессе формирования основ живой материи. Фуллерен, благодаря своим акцепторным свойствам, способен избирательно взаимодействовать с иными молекулами, а в условиях водного окружения передавать эти свойства упорядоченным слоям воды на значительное расстояние от своей поверхности.

Имеется много теорий возникновения жизни из неорганической материи и главными условиями их являются такие факторы, как

  1. Концентрирование простых молекул (CO, NO, NH3, HCN, Н2О и др.) вблизи активных центров, на которых происходят реакции с участием внешних источников энергии.
  2. Усложнение образуемых органических молекул до полимерных и первичных упорядоченных структур.
  3. Образование структур высокого порядка.
  4. Образование самовоспроизводящихся систем.

Экспериментально, при создании условий существовавших на земле в предбиологический период, была доказана возможность соблюдения первого фактора. Образование жизненно важных и неважных аминокислот и некоторых нуклеиновых оснований в этих условиях вполне реально. Однако вероятность выполнения всех условий для возникновения жизни практически равна нулю. Значит должно быть ещё какое-то условие, позволяющее целенаправленно осуществлять механизм сборки простых элементов, усложнения и упорядочение образующихся органических соединений до уровня появления живой материи. И этим условием, по нашему мнению, является присутствие матрицы. Эта матрица должна обладать постоянным составом, иметь высокую симметрию, взаимодействовать (но не сильно) с водой, создавать вокруг себя симметричное окружение из других молекул на значительном расстоянии, способной концентрировать вблизи своей поверхности активные радикалы и способствовать их нейтрализации с образованием сложных органических молекул, в то же время защитить нейтральные формы от атак активных радикалов, формировать себе подобные структуры и сходные структуры водного окружения. И главное – матрицей углеродной жизни должен быть углерод. И всем этим требованиям удовлетворяет фуллерен в его гидратированном состоянии. И, скорее всего, главный и самый устойчивый представитель семейства фуллеренов С60. Вполне возможно, что возникновение жизни не является первичным актом, а этот процесс происходит непрерывно и как-то влияет на развитие жизни, испытание существующей и образование новых её форм.

Фуллерены в природе существуют повсюду, где есть углерод и высокие энергии. Они существуют вблизи углеродных звезд, в межзвездном пространстве, в местах попадания молнии или вблизи кратеров вулканов даже при горении газа в домашней газовой плите. В местах скопления углеродных пород также обнаруживаются фуллерены. Особое место здесь принадлежит Карельским шунгитовым породам . Этим породам, содержащим до 90% чистого углерода около 2х миллиардов лет. Природа их происхождения до сих пор не ясна. Одно из предположений – падение большого углеродного метеорита. В шунгите впервые были обнаружены природные фуллерены. Нам также удалось экстрагировать и идентифицировать фуллерен С60 в шунгите .

Со времен Петра1 существовал в Карелии лечебный источник “Марциальные воды ”. Многие годы никто окончательно не мог объяснить причину лечебных свойств этого источника. Предполагалось, что повышенное содержание железа является причиной оздоровительного эффекта. Однако много есть железосодержащих источников на земле, а, как правило, никакого лечебного эффекта. Лишь после обнаружения фуллеренов в шунгитовых породах, сквозь которые протекает источник, возникло предположение о том, что фуллерен и есть квитэсценция лечебного действия Марциальных вод. Однако лечебные свойства этой воды, как и воды талой, сохраняются весьма не долго. Её нельзя разлить в бутылки и использовать по мере надобности. Уже на следующий день она теряет свои свойства. Марциальная вода, пройдя через породу, содержащую фуллерены и фуллереноподобные структуры, лишь “насыщается” той структурой, которую ей задает порода. А при хранении эти живительные кластеры распадаются. Фуллерен в воду самопроизвольно не попадает и нет, поэтому, структурообразующего элемента способного длительно сохранять упорядоченные кластеры воды, а, следовательно, такая вода быстро приобретает свойства обычной. Кроме того, присутствующие в ней ионы сами перестраивают нативную структуру воды, создавая свои гидратные кластеры.

Получив однажды, молекулярно – коллоидные растворы фуллеренов в воде, мы попробовали воспроизвести суть Марциальных вод в лаборатории. Но для этого взяли воду высокой очистки и добавили водного раствора фуллеренов в гомеопатической дозе. После чего стали проводить биологические испытания на различных моделях. Результаты оказались поразительными. Практически на любой модели патологии мы обнаруживаем положительный биологический эффект. Эксперименты уже продолжаются более 10 лет. При грамотно поставленном эксперименте, любые патологические изменения в живом организме практически всегда стараются возвратиться к норме. А ведь это не лекарственный препарат целенаправленного действия и не чужеродное химическое соединение, а просто шарик углерода растворенный в воде. Причем, складывается впечатление, что гидратированный фуллерен стремится привести в "нормальное состояние " все изменения в организме, к тем структурам, которые он породил как матрица в процессе зарождения жизни.

Открытие фуллеренов - новой формы существования одного из самых распространенных элементов на Земле - углерода, признано одним из удивительных и важнейших открытий в науке XX столетия. Несмотря на давно известную уникальную способность атомов углерода связываться в сложные, часто разветвленные и объемные молекулярные структуры, составляющую основу всей органической химии, фактическая возможность образования только из одного углерода стабильных каркасных молекул все равно оказалось неожиданной. Экспериментальное подтверждение того, что молекулы подобного типа, состоящие из 60 и более атомов, могут возникать в ходе естественно протекающих в природе процессов, произошло в 1985 г. И задолго до этого некоторые авторы предполагали стабильность молекул с замкнутой углеродной сферой. Однако эти предположения носили сугубо умозрительный, чисто теоретический характер. Вообразить, что такие соединения могут быть получены путем химического синтеза, было довольно трудно. Поэтому данные работы остались незамеченными, и внимание на них было обращено только задним числом, уже после экспериментального обнаружения фуллеренов. Новый этап наступил в 1990 г., когда был найден метод получения новых соединений в граммовых количествах, и описан метод выделения фуллеренов в чистом виде. Очень скоро после этого были определены важнейшие структурные и физико-химические характеристики фуллерена С 60 - наиболее легко образующегося соединения среди известных фуллеренов. За свое открытие - обнаружение углеродных кластеров состава C 60 и C 70 - Р. Керл, Р. Смолли и Г. Крото в 1996 г. были удостоены Нобелевской премии по химии. Ими же и была предложена структура фуллерена C 60 , известная всем любителям футбола.

Как известно, оболочка футбольного мяча скроена из 12 пентагонов и 20 гексагонов. Теоретически возможно 12500 вариантов расположения двойных и ординарных связей. Наиболее стабильный изомер (показанный на рисунке) имеет структуру усеченного икосаэдра, в которой отсутствуют двойные связи в пентагонах. Этот изомер С 60 получил название «Бакминстерфуллерен» в честь известного архитектора по имени R. Buckminster Fuller, создавшего сооружения, куполообразный каркас которых сконструирован из пентагонов и гексагонов. Вскоре была предложена структура для С 70 , напоминающая мяч для игры в регби (с вытянутой формой).

В углеродном каркасе атомы C характеризуются sp 2 -гибридизацией, причем каждый атом углерода связан с тремя соседними атомами. Валентность 4 реализуется за счет p-связей между каждым атомом углерода и одним из его соседей. Естественно, предполагается, что p-связи могут быть делокализованы, как в ароматических соединениях. Такие структуры могут быть построены при n≥20 для любых четных кластеров. В них должно содержаться 12 пентагонов и (n-20)/2 гексагонов. Низший из теоретически возможных фуллеренов C 20 представляет собой не что иное, как додекаэдр - один из пяти правильных многогранников, в котором имеется 12 пятиугольных граней, а шестиугольные грани вовсе отсутствуют. Молекула такой формы имела бы крайне напряженную структуру, и поэтому ее существование энергетически невыгодно.

Таким образом, с точки зрения стабильности, фуллерены могут быть разбиты на два типа. Границу между ними позволяет провести т.н. правило изолированных пентагонов (Isolated Pentagon Rule, IPR). Это правило гласит, что наиболее стабильными являются те фуллерены, в которых ни одна пара пентагонов не имеет смежных ребер. Другими словами, пентагоны не касаются друг друга, и каждый пентагон окружен пятью гексагонами. Если располагать фуллерены в порядке увеличения числа атомов углерода n, то Бакминстерфуллерен - C 60 является первым представителем, удовлетворяющим правилу изолированных пентагонов, а С 70 - вторым. Среди молекул фуллеренов с n>70 всегда есть изомер, подчиняющийся IPR, и число таких изомеров быстро возрастает с ростом числа атомов. Найдено 5 изомеров для С 78 , 24 - для С 84 и 40 - для C 90 . Изомеры, имеющие в своей структуре смежные пентагоны существенно менее стабильны.

Химия фуллеренов

В настоящее время преобладающая часть научных исследований связана с химией фуллеренов. На основе фуллеренов уже синтезировано более 3 тысяч новых соединений. Столь бурное развитие химии фуллеренов связано с особенностями строения этой молекулы и наличием большого числа двойных сопряженных связей на замкнутой углеродной сфере. Комбинация фуллерена с представителями множества известных классов веществ открыла для химиков-синтетиков возможность получения многочисленных производных этого соединения.

В отличие от бензола, где длины C-C связей одинаковы, в фуллеренах можно выделить связи более «двойного» и более «одинарного» характера, и химики часто рассматривают фуллерены как электронодефицитные полиеновые системы, а не как ароматические молекулы. Если обратиться к С 60 , то в нем присутствует два типа связей: более короткие (1.39 Å) связи, пролегающие вдоль общих ребер соседствующих шестиугольных граней, и более длинные (1.45 Å), расположенные по общих ребрам пяти- и шестиугольных граней. При этом ни шестичленные, ни, тем более, пятичленные циклы не обнаруживают ароматических свойств в том смысле, в каком их проявляют бензол или иные плоские сопряженные молекулы, подчиняющиеся правилу Хюккеля. Поэтому обычно более короткие связи в С 60 считают двойными, более длинные же - одинарными. Одна из важнейших особенностей фуллеренов состоит в наличии у них необычно большого числа эквивалентных реакционных центров, что нередко приводит к сложному изомерному составу продуктов реакций с их участием. Вследствие этого большинство химических реакций с фуллеренами не являются селективными, и синтез индивидуальных соединений бывает весьма затруднен.

Среди реакций получения неорганических производных фуллерена наиболее важными являются процессы галогенирования и получения простейших галогенпроизводных, а также реакции гидрирования. Так, эти реакции были одними из первых, проведенных с фуллереном C 60 в 1991 г. Рассмотрим основные типы реакций, ведущие к образоваению данных соединений.

Сразу после открытия фуллеренов большой интерес вызвала возможность их гидрирования с образованием «фуллеранов». Первоначально представлялось возможным присоединение к фуллерену шестидесяти атомов водорода. Впоследствии в теоретических работах было показано, что в молекуле С 60 Н 60 часть атомов водорода должна оказаться внутри фуллереновой сферы, так как шестичленные кольца, подобно молекулам циклогексана, должны принять конформации «кресла» или «ванны». Поэтому известные на настоящий момент молекулы полигидрофуллеренов содержат от 2 до 36 атомов водорода для фуллерена C 60 и от 2 до 8 - для фуллерена C 70 .

При фторировании фуллеренов обнаружен полный набор соединений С 60 F n , где n принимает четные значения вплоть до 60. Фторпроизводные с n от 50 до 60 называются перфторидами и обнаружены среди продуктов фторирования масс-спектрально в чрезвычайно малых концентрациях. Существуют также гиперфториды, то есть продукты состава C 60 F n , n>60, где углеродный каркас фуллерена оказывается частично разрушенным. Предполагается, что подобное имеет место и в перфторидах. Вопросы синтеза фторидов фуллеренов различного состава являются самостоятельной интереснейшей проблемой, изучением которой наиболее активно занимаются в химического факультета МГУ им. М.В. Ломоносова.

Активное изучение процессов хлорирования фуллеренов в различных условиях началось уже в 1991 году. В первых работах авторы пытались получить хлориды С 60 путем взаимодействия хлора и фуллерена в различных растворителях. К настоящему же времени выделено и охарактеризовано несколько индивидуальных хлоридов фуллеренов C 60 и C 70 , полученных путем применения различных хлорирующих агентов.

Первые попытки бромирования фуллерена были предприняты уже в 1991 году. Фуллерен С 60 , помещенный в чистый бром при температуре 20 и 50 O С, увеличивал массу на величину, соответствующую присоединению 2-4 атомов брома на одну молекулу фуллерена. Дальнейшие исследования бромирования показали, что при взаимодействии фуллерена С 60 с молекулярным бромом в течение нескольких дней получается ярко-оранжевое вещество, состав которого, как было определено, методом элементного анализа, был С 60 Br 28 . Впоследствии было синтезировано несколько бромпроизводных фуллеренов, отличающихся широким набором значений числа атомов брома в молекуле. Для многих из них характерно образование клатратов с включением молекул свободного брома.

Интерес к перфторалкилпроизводным, в частности трифторметилированным производным фуллеренов связан, в первую очередь, с ожидаемой кинетической стабильностью этих соединений по сравнению со склонными к реакциям нуклеофильного S N 2’-замещения галогенпроизводными фуллеренов. Кроме того, перфторалкилфуллерены могут представлять интерес как соединения с высоким сродством к электрону, обусловленным даже более сильными, чем у атомов фтора, акцепторными свойствами перфторалкильных групп. К настоящему времени число выделенных и охарактеризованных индивидуальных соединений состава C 60/70 (CF 3) n , n=2-20 превышает 30, причем интенсивно ведутся работы по модификации фуллереновой сферы многими другими фторсодержащими группами - CF 2 , C 2 F 5 , C 3 F 7 .

Создание же биологически активных производных фуллерена, которые могли бы найти применение в биологии и медицине, связано с приданием молекуле фуллерена гидрофильных свойств. Одним из методов синтеза гидрофильных производных фуллерена является введение гидроксильных групп и образования фуллеренолов или фуллеролов, содержащих до 26 групп ОН, а также, вероятно, кислородные мостики, аналогичные наблюдаемым в случае оксидов. Такие соединения хорошо растворимы в воде и могут быть использованы для синтеза новых производных фуллерена.

Что же касается оксидов фуллеренов, то соединения С 60 О и С 70 О присутствуют всегда в исходных смесях фуллеренов в экстракте в небольших количествах. Вероятно, кислород присутствует в камере при электродуговом разряде и часть фуллеренов окисляется. Оксиды фуллерена хорошо разделяются на колонках с различными адсорбентами, что позволяет контролировать чистоту образцов фуллеренов, и отсутствие или присутствие оксидов в них. Однако низкая стабильность оксидов фуллеренов препятствуют их систематическому изучению.

Что можно отметить относительно органической химии фуллеренов, так это то, что, будучи электронодефицитным полиеном, фуллерен С 60 проявляет склонность к реакциям радикального, нуклеофильного и циклоприсоединения. Особенно перспективными в плане функционализации фуллереновой сферы являются разнообразные реакции циклоприсоединения. В силу своей электронной природы С 60 способен принимать участие в реакциях -циклоприсоединения, причем наиболее характерными являются случаи, когда n=1, 2, 3 и 4.

Основной проблемой, решаемой химиками-синтетиками, работающими в области синтеза производных фуллеренов, и по сей день остается селективность проводимых реакций. Особенности стереохимии присоединения к фуллеренам состоят в огромном числе теоретически возможных изомеров. Так, например, у соединения C 60 X 2 их 23, у С 60 X 4 уже 4368, среди них 8 - продукты присоединения по двум двойным связям. 29 изомеров С 60 X 4 не будут, однако, иметь химического смысла, обладая триплетным основным состоянием, возникающим в связи с наличием sp2-гибридизованного атома углерода в окружении трех sp 3 -гибридизованных атомов, образующих С-Х связи. Максимальное число теоретически возможных изомеров без учета мультиплетности основного состояния будет наблюдаться в случае С 60 X 30 и составит 985538239868524 (1294362 из них - продукты присоединения по 15 двойным связям), тогда как число несинглетных изомеров той же природы, что и в приведенном выше примере, не поддается простому учету, но из общих соображений должно постоянно увеличивать с ростом числа присоединенных групп. В любом случае, число теоретически допустимых изомеров в большинстве случаев огромно, при переходе же к менее симметричным С 70 и высшим фуллеренам оно дополнительно возрастает в разы или на порядки.

На самом же деле, многочисленные данные квантово-химических расчетов показывают, что большинство реакций галогенирования и гидрирования фуллеренов протекают с образованием если и не наиболее стабильных изомеров, то, по крайней мере, незначительно отличающихся от них по энергии. Наибольшие расхождения наблюдаются в случае низших гидридов фуллеренов, изомерный состав которых, как было показано выше, может даже слегка зависеть от пути синтеза. Но при этом стабильность образующихся изомеров все равно оказывается крайне близкой. Изучение этих закономерностей образования производных фуллеренов представляет собой интереснейшую задачу, решение которой приводит к новым достижениям в области химии фуллеренов и их производных.

Фуллеренами в наиболее общем значении этого понятия можно назвать экспериментально полученные и гипотетические молекулы, состоящие исключительно из атомов углерода и имеющие форму выпуклых многогранников. Атомы углерода расположены в их вершинах, а C-C связи пролегают вдоль рёбер .

Фуллерен - это молекулярная форма углерода . Распространено определение, которое гласит, что фуллерены , находяшиеся в твёрдом состоянии, принято называть фуллеритами . Кристаллическая структура фуллерита представляет собой периодическую решётку молекул фуллерена, причём в кристаллическом фуллерите молекулы фуллеренов образуют ГЦК-решетку.

Фуллерен с начала девяностых годов представляет интерес для астрономии, физики, биологии, химии, геологии и других наук. Фуллерену приписывают фантастические медицинские свойства: например, фуллерен якобы уже начали использовать в косметике в качестве омолаживающего средства в косметологии. С помощью фуллерена собираются бороться с раком, ВИЧ и другими грозными заболеваниями. В то же время новизна этих данных, их малоизученность и специфика современного информационного пространства пока не позволяет доверять на сто процентов подобным сведениям о фуллерене.

ИЦМ(www.сайт)

Распространена сильно упрощённая точка зрения, что до открытия фуллерена существовали две полиморфные модификации углерода - графит и алмаз , а после 1990 года к ним добавилась ещё одна аллотропная форма углерода . На самом деле это не так, потому что формы существования углерода удивительно многообразны (см. статью ).

История открытия фуллеренов

Коллектив авторов под руководством Л.Н. Сидорова обобщил в монографии "Фуллерены" большое количество трудов на эту тему, хотя далеко не все: к моменту выхода книги общее количество посвящённых фуллеренам публикаций достигало примерно 15 тысяч. По мнению авторов, открытие фуллеренов - новой формы существования углерода - одного из самых распространённых элементов на нашей планете - признано одним из важнейших открытий в науке XX столетия. Несмотря на давно известную уникальную способность атомов углерода связываться в сложные разветвлённые и объёмные молекулярные структуры, составляющую основу всей органической химии, возможность образования только из одного углерода стабильных каркасных молекул всё равно оказалось неожиданной. По данным экспериментальное подтверждение тому, что молекулы подобного типа из 60 и более атомов могут возникать в ходе естественно протекающих в природе процессов, получено в 1985 г., но задолго до этого уже предполагали стабильность молекул с замкнутой углеродной сферой.

Обнаружение фуллеренов связано напрямую с исследованием процессов сублимации и конденсации углерода.

Новый этап в изучении фуллеренов наступил в 1990 году, когда был разработан метод получения новых соединений в граммовых количествах и описан способ выделения фуллеренов в чистом виде . После этого были установлены важнейшие структурные и физико-химические характеристики фуллерена С 60 . Изомер С60 (бакминстерфуллерен) - это наиболее легко образующееся соединение среди известных фуллеренов. Название своё фуллерен C60 получил в честь футуриста-архитектора Ричарда Бакминстера Фуллера, создавшего сооружения, куполообразный каркас которых состоял из пентагонов и гексагонов. Одновременно с этим в процессе исследования появилась необходимость в обобщающем названии фуллерены для объёмных структур с замкнутой поверхностью (углеродный каркас), благодаря их многообразию.

Стоит отметить также, что в честь Бакминстера Фуллера названа целая линейка углеродных материалов: фуллерен с60 (бакминстер фуллерен) также называют бакибол (Бакминстеру Фуллеру не нравилось имя "Бакминстер" и он предпочитал сокращённое имя "Баки"). Кроме того с этой же приставкой иногда называют: углеродные нанотрубки - бакитьюбы, фуллерены яйцевидной формы - buckyegg (buckyball egg) и т.п.

ИЦМ(www.сайт)

Свойства фуллеренов. Фуллерит

Свойства фуллеренов недостаточно изучены в силу объективных причин: относительно небольшое количество лабораторий имеет возможность изучать эти свойства. Зато в периодической и научно-популярной печати столько внимания отведено фуллеренам и их свойствам... Зачастую непроверенная информация о чудодейственных свойствах фуллеренов распространяется с поразительной скоростью и в огромных масштабах, в итоге слабый голос опровержений остаётся неуслышанным. Например, заявление одной группы учёных о том, что фуллерены присутствуют в шунгите, было проверено неоднократно, но подтверждения не нашло (см. обсуждение к ). Тем не менее шунгит сегодня считается "природным нанотехнологичным фуллеренсодержащим материалом" - утверждение, которое пока, на мой взгляд, больше похоже на маркетинговый ход.

Отдельные исследователи заявляют о таком настораживающем свойстве фуллеренов, как токсичность .

Как правило, когда говорят о свойствах фуллеренов имеют в виду их кристаллическую форму - фуллериты.

Существенное отличие кристаллов фуллеренов от молекулярных кристаллов многих других органических веществ в том, что у них не удаётся наблюдать жидкую фазу . Возможно, это связано с тем, что температура 1200 K перехода в жидкое состояние, которая приписывается фуллериту С 60 , уже превышает то её значение, при котором наступает заметная деструкция углеродного каркаса самих молекул фуллерена .

Согласно данным , к свойствам фуллеренов относится аномально высокоя стабильность, о которой свидетельствуют результаты исследований процессов с участием фуллеренов. В частности, автор отмечает, что кристаллический фуллерен существует как стабильное вещество вплоть до температур 1000 – 1200 К, что объясняется его кинетической устойчивостью. Правда это касается стабильности молекулы фуллерена С60 в инертной атмосфере аргона , а в присутствии кислорода наблюдается значительное окисление уже при 500 К с образованием CO и CO 2 .

Комплексному исследованию электрофизических и термодинамических свойств фуллеритов С60 и С70 в условиях экстремального ударного нагружения посвящена работа .

В любом случае при обсуждении свойств фуллеренов необходимо конкретизировать, какое соединение имеется в виду - С20, C60, С70 или другое, естественно, свойства у этих фуллеренов будут совершенно разные.

В настоящее время фуллерены С60, С70 и фуллеренсодержащие продукты производятся и предлагаются на реализацию различными зарубежными и отечественными предприятиями, поэтому купить фуллерены и заняться изучением свойств фуллеренов теоретически имеет возможность любой желающий. Фуллерены С60 и С70 предлагаются по ценам от 15$ до 210$ за грамм, и дороже, в зависимости от вида, степени чистоты, количества и других факторов. Производство и продажа фуллеренов »

Фуллерены в чугунах и сталях

Если предположить существование фуллеренов и фуллереновых структур в железо-углеродистых сплавах , то они должны существенно влиять на физико-механические свойства сталей и чугунов, участвуя в структурных и фазовых превращениях.

ИЦМ(www.сайт)

Механизмам кристаллизации железо-углеродистых сплавов давно уделяется очень пристальное внимание со стороны исследователей этих процессов. В статье рассматриваются возможные механизмы образования шаровидного графита в высокопрочном чугуне и особенности его строения как раз с учётом фуллереновой природы железоуглеродистых сплавов . Автор пишет, что "с открытием фуллеренов и структур на основе фуллеренов в ряде работ предпринимаются попытки объяснения механизма образования шаровидного графита на основе этих структур".

Работа рассматривает достижения в области химии фуллеренов и обобщает "новые представления о структуре железоуглеродистых расплавов". Автор утверждает, что молекулярная форма углерода – фуллерены С60 - идентифицирована им в железо-углеродистых сплавах, выплавленных методами классической металлургии, а также выявляет три возможных механизма появления фуллеренов в структуре сталей и чугунов :

  • переход фуллеренов в расплав из фуллеренсодержащей шихты в ходе металлургических процессов получения сплавов;
  • образование фуллеренов при первичной кристаллизации;
  • в результате структурных и фазовых превращений, протекающих при термических воздействиях.

    В своё время, 5 лет назад, мы выбрали фуллерен и гексагон в качестве логотипа сайта www.сайт, как символ последних достижений в области исследования железо-углеродистых расплавов, как символ новых разработок и открытий, связанных с модифицированием Fe-C расплава - неотъемлемым этапом современного литейного производства и малой металлургии.

  • Лит.:

    1. Сидоров Л.Н., Юровская М.А. и др. Фуллерены: Учебное пособие. М.: Издательство "Экзамен", 2005. - 688 с. (Серия "Учебное пособие для вузов") УДК 544(075.8) ББК 24.2я73 ISBN 5-472-00294-Х [ Аннотация ]
    2. Левицкий М.М., Леменовский Д.А. Фуллерен // Любопытные факты из истории химии [Электронный ресурс], 2005-2012. - Режим доступа: http://www.xenoid.ruu, свободный. - Загл. с экрана.
    3. Давыдов С.В. Кристаллизация шаровидного графита в расплаве высокопрочного чугуна // М.: Заготовительные производства в машиностроении, 2008, №3. – с. 3-8.
    4. Дунаев А., Шапорев А., под рук. Авдеева А.А. Богатое семейство углеродных материалов // Нанотехнологическое сообщество Нанометр [Электронный ресурс], 2008 - Режим доступа: http://www.nanometer.ru, свободный. - Загл. с экрана.
    5. Закирничная М.М. Образование фуллеренов в углеродистых сталях и чугунах при кристаллизации и термических воздействиях: Дис... докт. тех. наук; 05.02.01. - Уфа: УГНТУ. - 2001.
    6. Елецкий А.В., Смирнов В.М. Фуллерены // УФН, 1993. - №2. - С.33-58.
    7. Авдонин В.В. Электрофизические и термодинамические свойства фуллеритов C60 и C70 при высоких давлениях ударного сжатия: Автореф. дис... канд. тех. наук; 01.04.17. - Черноголовка: Институт проблем химической физики РАН. - 2008.
    8. Золотухин И.В. Фуллерит - новая форма углерода // Химия. - 1996.
    9. Палии Н.А. Фуллерен. Серебряный юбилей // Нанотехнологическое сообщество Нанометр [Электронный ресурс], 2010. - Режим доступа: http://www.nanometer.ru, свободный. - Загл. с экрана.
    10. Годовский Д.А. Образование фуллеренов при кристаллизации чугунов: Автореф. дис... канд. тех. наук; 05.02.01. - УФА. - 2000.
    11. A. Isacovic. Distinct Cytotoxic Mechanisms of Pristine versus Hydroxylated Fullerene / A. Isacovic, Z.Markovic, B.Todorovic, N.Nikolic, S. Vranjes-Djuric, M. Mirkovic, M. Dramicanin, L. Harhaji, N. Raicevic, Z. Nikolic, V. Trajkovic // Toxicological Sciences 91(1), 173–183 (2006)
    12. Борщевский А.Я. Фуллерены / Борщевский А.Я., Иоффе И.Н., Сидоров Л.Н., Троянов С.И., Юровская М.А. // Нанотехнологическое сообщество Нанометр [Электронный ресурс], 2007. - Режим доступа: http://www.nanometer.ru, свободный. - Загл. с экрана.

    Loading...Loading...