Таблица содержание элементов в организмах. Химический состав клетки - какой он? Роль химических элементов в клетках живых организмов

1. Дайте определения понятий.
Элемент - совокупность атомов с одинаковым зарядом ядра и числом протонов, совпадающим с порядковым (атомным) номером в таблице Менделеева.
Микроэлемент - элемент, который в организме находится в очень низких концентрациях.
Макроэлемент - элемент, который в организме находится в высоких концентрациях.
Биоэлемент - химический элемент, участвующий в жизнедеятельности клетки, составляет основу биомолекул.
Элементный состав клетки - процентное содержание химических элементов в клетке.

2. Что является одним из доказательств общности живой и неживой природы?
Единство химического состава. Никакаих элементов, характерных только для неживой природы, не существует.

3. Заполните таблицу.

ЭЛЕМЕНТНЫЙ СОСТАВ КЛЕТКИ

4. Приведите примеры органических веществ, молекулы которых состоят из трех, четырех и пяти макроэлементов.
3 элемента: углеводы и липиды.
4 элемента: белки.
5 элементов: нуклеиновые кислоты, белки.

5. Заполните таблицу.

БИОЛОГИЧЕСКАЯ РОЛЬ ЭЛЕМЕНТОВ

6. Изучите в § 2.2 раздел «Роль внешних факторов в формировании химического состава живой природы» и ответьте на вопрос: «Что такое биохимические эндемии, и каковы причины их происхождения?»
Биохимические эндемии – это заболевания растений, животных и человека, вызванные резким недостатком либо избытком какого-либо элемента в определенной области.

7. Какие вам известны заболевания, связанные с нехваткой микроэлементов?
Недостаток йода – эндемический зоб. Снижение синтеза тироксина и разрастание вследствие этого тканей щитовидной железы.
Недостаток железа – железодефицитная анемия.

8. Вспомните, по какому признаку химические элементы распределяют на макро-, микро- и ультрамикроэлементы. Предложите свою, альтернативную классификацию химических элементов (например, по функциям в живой клетке).
Микро-, макро- и ультрамикроэлементы делятся по признаку, основанному на процентному содержанию их в клетке. Кроме того, можно классифицировать элементы по функциям, регулирующие деятельность определенных систем органов: нервной, мышечной, кровеносной и сердечно-сосудистой, пищеварительной и т.д.

9. Выберите правильный ответ.
Тест 1.
Какими химическими элементами образовано большинство органических веществ?
2) С, О, Н, N;

Тест 2.
К макроэлементам не относится:
4) марганец.

Тест 3.
Живые организмы нуждаются в азоте, так как он служит:
1) составным компонентом белков и нуклеиновых кислот; 10. Определите признак, по которому все нижеперечисленные элементы, кроме одного, объединены в одну группу. Подчеркните этот «лишний» элемент.
Кислород, водород, сера, железо, углерод, фосфор, азот. Входит в состав только ДНК. А остальные все в белках.

11. Объясните происхождение и общее значение слова (термина), опираясь на значение корней, его составляющих.


12. Выберите термин и объясните, насколько его современное значение соответствует первоначальному значению его корней.
Выбранный термин – органоген.
Соответствие: термин, в принципе, соответствует своему первоначальному значению, но сегодня существует более точное определение. Ранее значение было таким, что элементы принимает участие лишь в построении тканей и клеток органов. Теперь же выяснено, что биологически важные элементы не только образуют химические молекулы в клетках и т.д., но и регулируют все процессы в клетках, тканях и органах. Они входят в состав гормонов, витаминов, ферментов и других биомолекул.

13. Сформулируйте и запишите основные идеи § 2.2.
Элементный состав клетки - это процентное содержание химических элементов в клетке. Элементы клетки принято классифицировать, в зависимости от их процентного содержания, на микро-, макро- и ультрамикроэлементы. Те элементы, которые участвуют в жизнедеятельности клетки, составляет основу биомолекул, называются биоэлементы.
К макроэлементам относятся: C N H O. Они – главные компоненты всех органических соединений в клетке. Кроме того, P S K Ca Na Fe Cl Mg – входят в состав всех важнейших биомолекул. Без них невозможно функционирование организма. Недостаток их приводит к смерти.
К микроэлементам: Al Cu Mn Zn Mo Co Ni I Se Br F B и др. Они также необходимы для нормального функционирования организма, но не так критично. Недостаток их вызывает болезнь. Они входят в состав биологически активных соединений, влияют на обмен веществ.
Есть ультрамикроэлементы: Au Ag Be и др. Физиологическая роль окончательно не установлена. Но они важны для клетки.
Существует понятие «биохимические эндемии» – заболевания растений, животных и человека, вызванные резким недостатком либо избытком какого-либо элемента в определенной области. Например, эндемический зоб (недостаток йода).
При недостатке элемента из-за образа питания также может возникнуть заболевание или недомогания. Например, при недостатке железа – анемия. При недостатке кальция – частые переломы, выпадение волос, зубов, боли в мышцах.

Атомный состав клетки

Из 110 элементов Периодической системы Менделеева в состав организмов входит более половины, причем 24 из них являются обязательными и обнаруживаются почти во всех типах клеток. По процентному содержанию в клетке химические элементы делятся на три группы: макро-, микро — и ультрамикроэлементы.

Макроэлементы составляют в сумме порядка 98% всех элементов клетки и входят в состав жизненно важных биологических веществ. К ним относят водород (>60%), кислород (~ 25%), углерод (~10%), азот (~3%).

К микроэлементам принадлежит 8 элементов, содержание которых в клетке составляет менее 2-3 %. Это магний (Mg), натрий (Na), кальций (Ca), железо (Fe), калий (K), сера (S) , фосфор (P), хлор (Cl).

К группе ультрамикроэлементов относят цинк, медь, йод, фтор, марганец, кобальт, кремний и другие элементы, содержащиеся в клетке в исключительно малых количествах (суммарное содержание порядка 0,1%).

Несмотря на низкое содержание в живых организмах, микро — и ультрамикроэлементы играют чрезвычайно важную роль: они входят в состав различных ферментов, гормонов, витаминов и обуславливают тем самым нормальное развитие и функционирование клетки и всего организма в целом. Так, например, медь является составной частью ферментов, занятых в процессах тканевого дыхания. Цинк – необходимый компонент почти ста ферментов, например, он содержится в гормоне поджелудочной железы – инсулине. Кобальт входит в состав витамина B12, регулирующего кроветворную функцию. Железо является компонентом гемоглобина, а йод – гормона щитовидной железы – тироксина.

Роль ряда ультрамикроэлементов в организме еще не уточнена или даже неизвестна (мышьяк).

Молекулярный состав клетки

Химический элементы входят в состав клеток в виде ионов или компонентов молекул неорганических и органических веществ.

Неорганические вещества

Вода – одно из самых распространенных веществ на Земле и преобладающий компонент всех живых организмов. Среднее количество воды в клетках большинства живых организмов составляет порядка 70% (в клетках медузы – 95%).

Вода в клетке находится в двух формах: свободной и связанной. Свободная вода составляет 95 % всей воды клетки; на долю связанной воды, входящей в состав фибриллярных структур и соединенной с некоторыми белками, приходится около 4-5 %%.

Вода обладает рядом свойств, имеющих исключительно важное значение для живых организмом. Исключительные свойства воды определяются структурой ее молекул. Молекула воды является диполем. Атом кислорода в ней ковалентно связан с двумя атомами водорода. Положительные заряды сосредоточены у атомов водорода, т.к. кислород электроотрицательнее водорода.

Из-за высокой полярности молекул вода является лучшим из известных растворителей. Вещества, хорошо растворимые в воде называют гидрофильными. К ним относят многие кристаллические соли, ряд органических веществ – спирты, сахара, некоторые белки (например, альбумины, гистоны). Вещества, плохо или совсем нерастворимые в воде, называют гидрофобными. К ним относятся жиры, нуклеиновые кислоты, некоторые белки (глобулины, фибриллярные белки).

Высокая теплоемкость воды делает ее идеальной жидкостью для поддержания теплового равновесия клетки и в целом организма. Так как на испарение воды расходуется много теплоты, то, испаряя воду, организмы могут защищать себя от перегрева (например, при потоотделении).

Вода обладает высокой теплопроводностью, обеспечивая возможность равномерного распределения тепла между тканями организма.

Вода является дисперсионной средой, играющей важную роль в коллоидной системе цитоплазмы, определяет структуру и функциональную активность многих макромолекул, служит основной средой для протекания химических реакций и непосредственным участником реакций синтеза и расщепления органических веществ, обеспечивает транспортировку веществ в клетке и организме (диффузия, кровообращение, восходящий и нисходящий ток растворов по телу растения и др.).

Вода практически не сжимается, создавая тургорное давление и определяя объем и упругость клеток и тканей.

Неорганические ионы

Имеют немаловажное значение для обеспечения жизнедеятельности клетки – это катионы (K+, Na+, Ca 2+, Mg 2+, NH3+) и анионы (Cl-, HPO4 2-, H2PO4-, HCO3-, NO3-) минеральных солей. Концентрация катионов и анионов в клетке и в окружающей её среде резко различна. Внутри клетки превалируют ионы К+ и крупные органические ионы, в околоклеточных жидкостях всегда больше ионов Na+ и Cl-. Вследствие этого образуется разность зарядов внешней и внутренней поверхностей мембраны клетки, между ними возникает разность потенциалов, обуславливающая такие важные процессы как передача возбуждения по нерву или мышце.

Соединения азота, фосфора, кальция и другие неорганические вещества служат источником строительного материала для синтеза органических молекул (аминокислот, белков, нуклеиновых кислот и др.) и входят в состав ряда опорных структур клетки и организма.

Некоторые неорганические ионы (например, ионы кальция и магния) являются активаторами и компонентами многих ферментов, гормонов и витаминов. При недостатке этих ионов нарушаются жизненно важные процессы в клетке.

Немаловажные функций в живых организмах выполняют неорганические кислоты и их соли. Соляная кислота входит в состав желудочного сока человека и животных, ускоряя процесс переваривания белков пищи. Остатки серной кислоты, присоединяясь к нерастворимым в воде чужеродным веществам, придают им растворимость, способствуя к выведению из организма. Неорганические натриевые и калиевые соли азотистой и фосфорной кислот, кальциевая соль серной кислоты служат важными элементами минерального питания растений, их вносят в почву в качестве удобрений. Соли кальция и фосфора входят в состав костной ткани животных.

Органические вещества.

В зависимости от молекулярной массы и структур различают малые низкомолекулярные органические молекулы – мономеры – и более крупные, высокомолекулярные макромолекулы – полимеры. Мономеры служат строительным материалом для полимеров.

Углеводы

Различают три основных класса углеводов: моносахариды, олигосахариды и полисахариды, различающиеся числом мономерных звеньев.

Моносахариды – бесцветные, твердые кристаллические вещества, легко растворимые в воде, но нерастворимые в неполярных растворителях, имеющие, как правило, сладковатый вкус. В зависимости от числа атомов различают триозы, тетрозы, пентозы, гексозы и гептозы. Наиболее распространены в природе гексозы (глюкоза, фруктоза) – основные источники энергии в клетках (при полном расщеплении 1г глюкозы высвобождается 17,6 кДж энергии) и пентозы (рибоза, дезоксирибоза), входящие в состав нуклеиновых кислот.

Два или несколько ковалентно связанных друг с другом с помощью гликозидной связи моносахарида образуют ди — или олигосахариды. Дисахариды также широко распространены в природе: наиболее часто встречается мальтоза, или солодовый сахар, состоящий из двух молекул глюкозы.

Биологическое значение углеводов состоит в том, что они являются мощным и богатым источником энергии, необходимой клетке для осуществления различных форм активности. Полисахариды – удобная форма накопления энергоемких моносахаридов, а также незаменимый защитный и структурный компонент клеток и тканей животных, растений и микроорганизмов. Некоторые полисахариды входят в состав клеточных мембран и служат рецепторами, обеспечивая узнавание клеток друг другом и их взаимодействие.

Липиды

Липиды представляют собой органические вещества, не растворимые в воде, но растворимые в неполярных растворителях – эфире, хлороформе, бензоле. Они обнаруживаются во всех без исключения клетках и разделены на несколько классов, выполняющих специфические биологические функции. Наиболее распространенными в составе живой природы являются нейтральные жиры, или триацилглицерины, воска, фосфоролипиды, стеролы.

Структурными компонентами большинства липидов являются жирные кислоты. Жирные кислоты являются ценным источником энергии. При окислении 1г жирных кислот высвобождается 38 кДж энергии и синтезируется в два раза большее количество АТФ, чем при расщеплении такого же количества глюкозы.

Жиры

Наиболее простые и широко распространенные липиды. Жиры являются основной формой запасания липидов в клетке. Жиры используются также в качестве источника воды (при сгорании 1г жира образуется 1,1г воды). У многих млекопитающих под кожей откладывается толстый слой подкожного жира, который защищает организм от переохлаждения.

Воска — это сложные эфиры, образуемые жирными кислотами и много атомными спиртами. У позвоночных животных секретируются кожными железами. Покрывая кожу и её производные (волосы, мех, шерсть, перья), воска смягчают их и предохраняют от действия воды.

Фосфолипиды в состав молекул, которых входит остаток фосфорной кислоты, являются основой всех клеточных мембран.

Стероиды составляют группу липидов, не содержащих жирных кислот и имеющих особую структуру. К ним относится ряд гормонов, в частности кортизон, вырабатываемый корой надпочечников, различные половые гормоны, а также холестерин – важный компонент клеточных мембран у животных.

Белки

Белки представляют собой самый многочисленный и наиболее разнообразный класс органических соединений клетки. Белки – это биологические гетерополимеры, мономерами которых являются аминокислоты.

Среди белков организма выделяют простые белки, состоящие только из аминокислот, и сложные, включающие помимо аминокислот, так называемые простатические группы различной химической природы. Липопротеины имеют в своем составе липидный компонент, гликопротеины – углеводный. В состав фосфопротеинов входит одна или несколько фосфатных групп. Металлопротеины содержат различные металлы; нуклеопротеины – нуклеиновые кислоты. Простетические группы обычно играют важную роль при выполнении белком его биологической функции.

Белки выполняют в организме чрезвычайно важные и многообразные функции, перечисленные в нижеследующей таблице, но несомненно наиболее значительной является каталитическая, или ферментативная, функция.

Некоторые функции, выполняемые белками. Таблица.

Выполняемая функция

Примеры белков

Ферменты Служат катализаторами определенных химических реакции; у разных организмов обнаружено более 2000 различных ферментов. Амилаза расщепляет крахмал до глюкозы; липаза расщепляет жиры до глицерина и жирных кислот.
Структурные белки Являются структурными компонентами биологических мембран и многих внутриклеточных органелл, главным компонентом опорных структур организма. Коллаген хрящей и сухожилий, эластин соединительной ткани, кератин волос и ногтей.
Сократительные белки Обеспечивают движение клеток, внутриклеточных структур. Актин и миозин мышечного волокна, тубулин микротрубочек.
Транспортные белки Связывают и переносят специфические молекулы и ионы из одного органа в другой. Гемоглобин переносит кислород, сывороточный альбумин – жирные кислоты.
Пищевые белки Питают зародыш на ранних стадиях развития и запасают биологически ценные вещества и ионы. Казеин молока; ферритин, запасающий железо в селезенке.
Защитные белки Предохраняют организм от вторжения других организмов и повреждений. Антитела, вырабатываемые лимфоцитами, блокируют чужеродные антигены; фибриноген и тромбин, предохраняющие организм от кропотери.
Регуляторные белки Участвуют в регуляции активности клетки и организма. Инсулин регулирует обмен глюкозы; гистоны – генную активность.

Нуклеиновые кислоты

Нуклеиновые кислоты составляют 1 – 5 % сухой массы клетки и представлены моно- и полинуклеотидами. Мононуклеотид состоит из одного пуринового (аденин – А, гуанин – Г) или пиримидиного (цитозин – Ц, тимин – Т, урацил – У), азотистого основания, пятиуглеродного сахара (рибоза или дизоксорибоза) и 1- 3 остатков фосфорной кислоты.

Мононуклеотиды выполняют в клетке исключительно важные функций. Они выступают в качестве источников энергии, причем АТФ является универсальным соединением, энергия которого используется почти во всех внутриклеточных реакциях, энергия ГТФ необходима в белоксинтезирующей деятельности рибосом. Производные нуклеотидов служат также переносчиками некоторых химических групп, например НАД (никотинамиддинуклеотид) – переносчик атомов водорода.

Однако наиболее важная роль нуклеотидов состоит в том, что они служат строительными блоками для сборки полинуклеотидов РНК и ДНК (рибонуклеиновых и дезоксирибонуклеиновых кислот).

РНК и ДНК – это линейные полимеры, содержащие от 70 – 80 до 10 в 9 степени мононуклеидов.

Нуклеотид РНК – содержит пятиугольный сахар – рибозу, одно из четырех азотистых оснований (гуанин, урацил, аденин или цитозин) и остаток фосфорной кислоты. Нуклеотиды, входящие в состав ДНК, содержат пятиугольный сахар – дезоксирибозу, одно из четырех основании (гуанин, тимин, аденин или цитозин) и остаток фосфорной кислоты.

Данные рентгеноструктурного анализа показали, что молекулы ДНК большинства живых организмов, за исключением некоторых фагов, состоят из двух полинуклеотидных цепей, антипараллельно направленных. Молекула ДНК имеет форму двойной спирали, в которой полинуклеотидные цепи закручены вокруг воображаемой центральной оси. Спираль ДНК характеризуется рядом параметров. Ширина спирали около 2 нм. Шаг или полный оборот спирали составляет 3,4 нм и содержит 10 пар комплементарных нуклеотидов.

ДНК обладает уникальными свойствами: способностью к самоудвоению (репликации) и способностью к самовосстановлению (репарации).

Репликация осуществляется под контролем ряда ферментов и протекает в несколько этапов. Она начинается в определенных точках молекулы ДНК. Специальные ферменты разрывают водородные связи между комплементарными азотистыми основаниями, и спираль раскручивается. Полинуклеотидные цепи материнской молекулы удерживаются в раскрученном состоянии и служат матрицами для синтеза новых цепей.

С помощью фермента ДНК-полимеразы из имеющихся в среде трифосфатов дезоксиринуклеотидов (дАТФ, дГТФ, дЦТФ, дТТФ) комплементарно материнским цепям собираются дочерние цепи. Репликация осуществляется одновременно на обеих материнских цепях, но с разной скоростью и некоторыми отличиями. На одной из цепей (лидирующей) сборка дочерней цепи идет непрерывно, на другой (отстающей) – фрагментарно. В последующем синтезируемые фрагменты сшиваются с помощью фермента ДНКлигазы. В результате из одной молекулы ДНК образуется две, каждая из которых имеет материнскую и дочернюю цепи. Синтезируемые молекулы являются точными копиями друг друга и исходной молекулы ДНК. Такой способ репликации называется полуконсервативным и обеспечивает точное воспроизведение в дочерних молекулах той информации, которая была в материнской молекуле.

Репарацией называют способность молекулы ДНК «исправлять» возникающие в её цепях изменения. В восстановлении исходной структуры участвуют не менее 20 белков: узнающих измененные участки ДНК и удаляющих их из цепи, восстанавливающих правильную последовательность нуклеотидов и сшивающих восстановленный фрагмент с остальной молекулой ДНК.

Перечисленные особенности химической структуры и свойств ДНК обусловливают выполняемые ей функции. ДНК записывает, хранит, воспроизводит генетическую информацию, участвует в процессах ее реализации между новыми поколениями клеток и организмов.

Рибонуклеиновые кислоты – РНК – представлены разнообразными по размерам, структуре и выполняемым функциям молекулами. Все молекулы РНК являются копиями определенных участков молекулы ДНК и, помимо уже указанных отличий, оказываются короче ее и состоят из одной цепи. Между отдельными комплементарными друг другу участками одной цепи РНК возможно спаривание основании (А с У, Г с Ц) и образование спиральных участков. В результате молекулы приобретают специфическую конформацию.

Матричная, или информационная, РНК (мРНК, иРНК) синтезируются в ядре под контролем фермента РНК-полимеразы комплементарно информационным последовательностям ДНК, переносит эту информацию на рибосомы, где становится матрицей для синтеза белковой молекулы. В зависимости от объема копируемой информации молекула мРНК может иметь различную длину и составляет около 5% всей клеточной РНК.

Рибособная РНК (рРНК) синтезируется в основном в ядрышке, в области генов рРНК и представлена разнообразными по молекулярной массе молекулами, входящими в состав большой и малой субчастиц рибосом. На долю рРНК приходится 85% всей РНК клетки.

Транспортная РНК (тРНК) составляет около 10% клеточной РНК. Существует более 40 видов тРНК. При реализации генетической информации каждая тРНК присоединяет определенную аминокислоту и траспортирует ее к месту сборки полипентида. У эукариот тРНК состоят из 70-90 нуклеотидов.

См. по теме:
Суть клеточной теории
Поверхностный, ядерный аппарат клетки
Жизненный и митотический циклы, поступление энергии
Химический состав хромосом
Способы деления клетки
Гаметогенез, особенности гамет
Цитоскелет клетки
Строение клетки растений, животных
Клетки Лангерганса
Органоиды

3D-принтеры

Дельта принтеры крайне требовательны к точности изготовления комплектующих (геометрия рамы, длины диагоналей, люфтам соединения диагоналей, эффектора и кареток) и всей геометрии принтера. Так же, если концевые выключатели (EndStop) расположены на разной высоте (или разный момент срабатывания в случае контактных концевиков), то высота по каждой из осей оказывается разная и мы получаем наклонную плоскость не совпадающая с плоскостью рабочего столика(стекла). Данные неточности могут быть исправлены либо механически (путем регулировки концевых выключателей по высоте), либо программно. Мы используем программный способ калибровки.
Далее будут рассмотрены основные настройки дельта принтера.
Для управления и настройки принтера мы используем программу Pronterface .
Калибровка принтера делится на три этапа:

1 Этап. Корректируем плоскость по трем точкам

Выставление в одну плоскость трех точек - A, B, C (расположенных рядом с тремя направляющими). По сути необходимо уточнить высоту от плоскости до концевых выключателей для каждой из осей.
Большинство (если не все) платы для управления трехмерным принтером (В нашем случае RAMPS 1.4) работают в декартовой системе координат, другими словами есть привод на оси: X, Y, Z.
В дельта принтере необходимо перейти от декартовых координат к полярным. Поэтому условимся, что подключенные к двигателям X, Y, Z соответствует осям A, B, C .(Против часовой стрелки начиная с любого двигателя, в нашем случае смотря на логотип слева - X-A, справа Y-B, дальний Z-C) Далее при слайсинге, печати и управлении принтером в ручном режиме, мы будем оперировать классической декартовой системой координат, электроника принтера сама будет пересчитывать данные в нужную ей систему. Это условность нам необходима для понятия принципа работы и непосредственной калибровки принтера.

Точки, по которым мы будем производить калибровку назовем аналогично (A, B, C) и позиция этих точек равна A= X-52 Y-30 ; B= X+52 Y-30 ; C= X0 Y60 .

Алгоритм настройки:

2 Этап. Исправляем линзу

После того как мы выставили три точки в одну плоскость необходимо произвести коррекцию высоты центральной точки. Из за особенности механики дельты при перемещении печатающей головки между крайними точками в центре она может пройти либо ниже либо выше нашей плоскости, тем самым мы получаем не плоскость а линзу, либо вогнутую либо выпуклую.

Корректируется этот параметр т.н. дельта радиусом, который подбирается экспериментально.

Калибровка:

  1. Отправляем головку на высоту щупа в любую из трех точек стола. Например G1 Z9 X-52 Y-30
  2. Сравниваем высоту центральной точки и высоту точек A,B,C.

    (Если высота точек A, B, C разная, необходимо вернутся к предыдущей калибровки.)

  3. Если высота центральной точки больше остальных, то линза выпуклая и необходимо увеличить значение дельта радиуса. Увеличивать или уменьшать желательно с шагом +-0,2мм, при необходимости уменьшить или увеличить шаг в зависимости от характера и величины искривления (подбирается экспериментально)
  4. Команды:
    G666 R67,7
    M500
    G28
  5. Подгоняем дельта радиус пока наша плоскость не выровняется
3 Этап. Находим истинную высоту от сопла до столика

Третьим этапом мы подгоняем высоту печати (от сопла до нижней плоскости - столика) Так как мы считали, что общая высота заведомо не правильная, необходимо ее откорректировать, после всех настроек высот осей. Можно пойти двумя путями решения данной проблемы:
1 Способ:
Подогнав вручную наше сопло под щуп, так что бы оно свободно под ним проходило, но при этом не было ощутимого люфта,

  • Командой M114 выводим на экран значение фактической высоты нашего HotEnd’а
  • Командой M666 L получаем полное значение высоты (Параметр H)
  • После чего вычитаем из полной высоты фактическую высоту.
  • Получившееся значение вычитаем из высоты щупа.

Таким образом мы получаем величину недохода сопла до нижней плоскости, которое необходимо прибавить к полному значению высоты и и записать в память принтера командами:
G666 H 235.2
M500
G28

2 Способ:
Второй способ прост как валенок. С “потолка”, “на глаз” прибавляем значение высоты (после каждого изменение не забываем “уходить” в home), добиваясь необходимого значения высоты, но есть шанс переборщить со значениями и ваше сопло с хрустом шмякнется об стекло.

Калибровка Prizm Pro

Калибровка Prizm Pro осуществляется по тому же принципу, только координаты точек A, B, C будут соответствовать значениям: A=X-155.9 Y-90 ; B=X155.9 Y-90 ; C= X0 Y180

Как сделать авто калибровку для вашего принтера и что при этом авто калибрует принтер вы узнаете из следующих статей.

Вы можете помочь и перевести немного средств на развитие сайта

Белок каталаза выполняет в клетке функцию;

Класс

1. Наиболее распространенными в клетках живых организмов элементами являются:

2. Азот как элемент входит в состав:

3. Водород как элемент входит в состав:

4. На каком уровне организации не наблюдается различие между органическим и неорганическим миром?

5.Воды содержится больше в клетках:

6. Вода — основа жизни:

7. Вещества, хорошо растворимые в воде, называются:

8. К гидрофобным соединениям клетки относятся:

9. К углеводам моносахаридам относятся:

10. К углеводам полисахаридам относятся:

11. Основные функции жиров в клетке:

12.Белки — это биополимеры мономерами, которого являются:

13. Аминокислоты различаются:

14. В состав молекул белков входят:

15. Структура молекулы белка, которую определяет последовательность аминокислотных остатков:

16. Вторичная структура белка связана с:

17. Между первым и вторым понятием в задании существует определенная связь.. Найдите это слово Клетка:хлоропласт=растение:_______________

18. Наименее прочными структурными белка является:

20. При неполной денатурации белка первой разрушается структура:

21. Мономерами молекул ДНК являются:

22. Нуклеотиды ДНК состоят из:

23. Состав нуклеотидов ДНК отличается друг от друга содержанием:

24. Нуклеотиды ДНК содержат азотистые основания:

25. Нуклеотиды РНК состоят из:

26.Молекулы, при окислении которых освобождается много энергии:

27. Наиболее распространенными в клетках живых организмах элементами являются:

28. Углерод как элемент входит в состав:

29. Функции воды в клетке:

30. К углеводам моносахаридам относятся:

31. К углеводам полисахаридам относятся:

32. В состав молекулы ДНК входят остатки:

33. Продуктами реакции взаимодействия глицерина и высших жирных кислот являются:

34. Жиры и масла по отношению к воде обладают свойствами:

35. Белки — это:

36. В водных растворах аминокислоты проявляют свойства:

37. Первичная структура белка определяется:

38. Первичная структура белка поддерживается связями:

39. Ферменты выполняют следующие функции:

40. Биологическую активность белка определяет структура:

41. Молекулы, которые наиболее легко расщепляются в клетке с освобождением энергии:

42.Мономерами молекул нуклеиновых кислот являются:

43.Нуклеотиды молекулы ДНК содержат азотистые основания:

44. Углеводов содержится больше:

45.Нуклеотиды молекулы РНК содержат азотистые основания:

46. Жиры растворимы:

47. Молекула вещества, состоящая из нуклеотидов и имеющая вид одноцепочной нити:

48. Наиболее крупные размеры среди нуклеиновых кислот имеют молекулы:

49. Соли К важны для организма, так как:

Наука, изучающая функционирование организмов, называется:

51. Способность к хемоавтотрофному способу питания характерна для:

52. Вещества, служащие универсальными биологическими аккумуляторами энергии в клетке:

53. В молекуле ДНК количество нуклеотидов с цитозином составляет 15% от общего числа. Какой процент нуклеотидов с аденином в этой молекуле?

54. Аминокислотный остаток белка кодируется:

55. Последовательность нуклеотидов в одной из комплементарных цепей ДНК – АГА. Какова соответствующая ей последовательность нуклеотидов в другой цепи?:

56. В клетках грибов, как и в клетках животных, отсутствуют:

57. Органоиды клетки, отвечающие за ее передвижение:

58. Собственную ДНК имеют:

59. Из предложенных ответов выберите одно из положений клеточной теории :

61. АТФ считают основным источником энергии в клетки, так как:

62. Обмен веществ происходит в каждой живой клетке и представляет собой:

63. Что служит главным источником энергии, обеспечивающим круговорот веществ в экосистемах?

Отправить сообщение об ошибке
Если нашли ошибку в тексте выделите ее мышкой и нажмите сочетание клавиш Ctrl+ENTER, укажите правильный текст без ошибки.

Состав клетки. Химические элементы в составе клетки

В клетках разных организмов обнаружено около 70 элементов периодической системы элементов Д. И. Менделеева, но лишь 24 из них имеют вполне установленное значение и встречаются постоянно во всех типах клеток.

Наибольший удельный вес в элементном составе клетки приходится на кислород, углерод, водород и азот. Это так называемые основные или биогенные элементы. На долю этих элементов приходится более 95 % массы клеток, причем их относительное содержание в живом веществе гораздо выше, чем в земной коре.

Жизненно важными являются также кальций, фосфор, сера, калий, хлор, натрий, магний, йод и железо. Их содержание в клетке исчисляется десятыми и сотыми долями процента. Перечисленные элементы составляют группу макроэлементов.

Другие химические элементы: медь, марганец, молибден, кобальт, цинк, бор, фтор, хром, селен, алюминий, йод, железо, кремний — содержатся в исключительно малых количествах (менее 0,01 % массы клеток). Они относятся к группе микроэлементов.

Процентное содержание в организме того или иного элемента никоим образом не характеризует степень его важности и необходимости в организме. Так, например, многие микроэлементы входят в состав различных биологически активных веществ — ферментов, витаминов (кобальт входит в состав витамина B12), гормонов (йод входит в состав тироксина);оказывают влияние на рост и развитие организмов (цинк, марганец, медь), кроветворение (железо, медь), процессы клеточного дыхания (медь, цинк) и т. д. Содержание и значение для жизнедеятельности клеток и организма в целом различных химических элементов приведено в таблице:

Все живые организмы состоят из клеток . Организм человека тоже имеет клеточное строение , благодаря которому возможен его рост, размножение и развитие.

Организм человека состоит из огромного числа клеток разной формы и размеров, которые зависят от выполняемой функции. Изучением строения и функций клеток занимается цитология .

Каждая клетка покрыта состоящей из нескольких слоев молекул мембраной, которая обеспечивает избирательную проницаемость веществ. Под мембраной в клетке находится вязкое полужидкое вещество – цитоплазма с органоидами.

Митохондрии
– энергетические станции клетки, рибосомы – место образования белка, эндоплазматическая сеть, выполняющая функцию транспортировки веществ, ядро – место хранения наследственной информации, внутри ядра – ядрышко.

В нем образуется рибонуклеиновая кислота. Возле ядра расположен клеточный центр, необходимый при делении клетки.

Клетки человека состоят из органических и неорганических веществ.

Неорганические вещества:
Вода – составляет 80 % массы клетки, растворяет вещества, участвует в химических реакциях;
Минеральные соли в виде ионов – участвуют в распределении воды между клетками и межклеточным веществом. Они необходимы для синтеза жизненно важных органических веществ.
Органические вещества:
Белки – основные вещества клетки, самые сложные из встречающихся в природе веществ. Белки входят в состав мембран, ядра, органоидов, выполняют в клетке структурную функцию. Ферменты – белки, ускорители реакции;
Жиры – выполняют энергетическую функцию, они входят в состав мембран;
Углеводы – также при расщеплении образуют большое количество энергии, хорошо растворимы в воде и поэтому при их расщеплении энергия образуется очень быстро.
Нуклеиновые кислоты – ДНК и РНК, они определяют, хранят и передают наследственную информацию о составе белков клетки от родителей к потомству.
Клетки человеческого организма обладают рядом жизненно важных свойств и выполняют определенные функции:

В клетках идет обмен веществ , сопровождающийся синтезом и распадом органических соединений; обмен веществ сопровождается превращением энергии;
Когда в клетке образуются вещества, она растет, рост клеток связан с увеличением их числа, это связано с размножением путем деления;
Живые клетки обладают возбудимостью;
Одна из характерных особенностей клетки – движение.
Клетке человеческого организма присущи следующие жизненные свойства: обмен веществ, рост, размножение и возбудимость. На основе этих функций осуществляется функционирование целого организма.

Основные химические элементы клетки и их значение для жизнедеятельности организмов

В клетках живых организмов обнаружено около 70 элементов периодической системы элементов Д.И. Менделеева. Все эти элементы встречаются и в неживой природе, что указывает на единство живой и неживой природы.

МАКРОЭЛЕМЕНТЫ › 99% О, С, Н, N, P, K, Cl, Ca, Mg, Na, Fe
МИКРОЭЛЕМЕНТЫ ≈0,01% I, Co, Mn, Cu идр.
УЛЬТРАМИКРОЭЛЕМЕНТЫ От 10-4 до 10-6% Pb, Br,Ag и др.

В зависимости от содержания химических элементов в клетке их разделяют на группы: макроэлементы, микроэлементы и ультрамикроэлементы.

Отдельную групу среди макроелементов составляют органогенные элементы (O, C, H, N), которие образуют молекулы всех органических веществ.

Макроэлементы, их роль в клетке. Органогенные элементы — кислород, углерод, водород и азот составляют ≈ 98% химического содержания клетки. Они легко образуют ковалентные связи за счет обобщения двух электронов (по одному от каждого атома) и благодаря этому формируют большое разнообразие органических веществ в клетке.

Жизненно важными являются и другие макроэлементы в клетках животных и человека (калий, натрий, магний, кальций, хлор, железо), на долю которых приходится около 1,9% .

Так, ионы Калия и Натрия регулируют осмотическое давление в клетке, обуславливают нормальный ритм сердечной деятельности, возникновение и проведение нервного импульса. Ионы Кальция принимают участие в свертывание крови, сокращении мышечных волокон.

Нерастворимые соли Кальция принимают участие в формировании костей и зубов.

Ионы магния играют важную роль в функционировании рибосом и митохондрий. Железо входит в состав гемоглобина.

Микроэлементы, их роль в клетке. Биологическая роль микро- и ультрамикроэлементов определяется не их процентным содержанием, а тем, что они входят в состав ферментов, витаминов и гормонов. Например, Кобальт входит в состав витамина В12, Йод – в состав гормона тироксина, Медь – в состав ферментов, катализирующих окислительно-востановительные процессы.

Ультрамикроэлементы, их роль в клетке. Их концентрация не привышает 0,000001 %. Это такие элементы: золото, серебро, свинец, уран, селен, цезий, берилий, радий, и др. Физиологическая роль многих химических элементов еще не установлена, но они необходимы для нормального функционирования организма. Например, дефицит ультрамикроэлемента Селена приводит к развитию раковых заболеваний.

Обобщенные сведения о биологическом значении основных химических элементов, содержащихся в клетках живых организмов, представлены в таблице 4.1.

При недостаче важного химического элемента в почве определенного региона, что обусловливает дефицит его в организме местных жителей, возникают так называемые эндемические болезни.

Все химические элементы содержатся в клетке в виде ионов или входят в состав химических веществ.

Табл. 4.1.Основные химические элементы клетки и их значение для жизнидеятольности организмов

Элемент Символ Содержание Значение для клетки и организма
Углерод o 15-18
Кислород N 65-75 1,5-3,0 Главный структурный компонент всех органических соединений клетки
Азот H 8-10 Обязательный компонент аминокислот
Водород K 0.0001 Главный структурный компонент всех органических соединений клетки
Фосфор S 0,15-0,4 Входит в состав костной ткани и зубной эмали, нуклеиновых кислот, АТФ и некоторых ферментов
Калий Cl 0,15-0,20 Содержится в клетке только в виде ионов, активирует ферменты белкового синтеза, обуславливает ритм сердечной деятельности, участвует в процессах фотосинтеза
Сера Ca 0,05-0,10 Входит в состав некоторых аминокислот, ферментов, витамина В
Хлор Mg 0,04-2,00 Важнейший отрицательный ион в организме животных, компонент НС1 в желудочном соке
Кальций Na 0,02-0,03 Входит в состав клеточной стенки растений, костей и зубов, активирует свертывание крови и сокращение мышечных волокон
Магний Fe 0,02-0,03 Входит в состав молекул хлорофилла, а также костей и зубов, активирует энергетический обмен и синтез ДНК
Натрий I 0,010-0,015 Содержится в клетке только в виде ионов, обуславливаетнормальный ритм сердечной деятельности, влияет на синтез гормонов
Железо Cu 0,0001 Входит в состав многих ферментов, гемоглобина и миоглобина, участвует в биосинтезе хлорофилла, в процессах дыхания и фотосинтеза
Йод Mn 0,0002 Входит в состав гормонов щитовидной железы
Медь Mo 0.0001 Входит в состав некоторых ферментов, участвует в процессах кровообразования, фотосинтеза, синтеза гемоглобина
Марганец Co 0,0001 Входит в состав некоторых ферментов или повышает их активность, принимает участие в развитии костей, ассимиляции азота и процессе фотосинтеза
Молибден Zn 0.0001 Входит в состав некоторых ферментов, участвует н процессах связывания атмосферного азота растениями
Кобальт o 0,0003 Входит в состав витамина В12, участвует в фиксации ат- мосферного азота растениями, развитии эритроцитов
Цинк N 15-18 Входит в состав некоторых ферментов, участвует в синтезе растительных гормонов (фуксина) и спиртовом брожении

Химические вещества клетки

МИНЕРАЛЬНЫЕ СОЛИ 1-1,5%
НУКЛЕИНОВЫЕ КИСЛОТЫ 1-1,5 %

Предыдущая234567891011121314151617Следующая

Больше, других - меньше.

На атомарном уровне различий между органическим и неорганическим миром живой природы нет: живые организмы состоят из тех же атомов, что и тела неживой природы. Однако соотношение разных химических элементов в живых организмах и в земной коре сильно различается. Кроме того, живые организмы могут отличаться от окружающей их среды по изотопному составу химических элементов.

Условно все элементы клетки можно разделить на три группы.

Макроэлементы

Цинк - входит в состав ферментов, участвующих в спиртовом брожении, в состав инсулина

Медь - входит в состав окислительных ферментов, участвующих в синтезе цитохромов.

Селен - участвует в регуляторных процессах организма.

Ультрамикроэлементы

Ультрамикроэлементы составляют менее 0,0000001 % в организмах живых существ, к ним относят золото , серебро оказывают бактерицидное воздействие, подавляет обратное всасывание воды в почечных канальцах, оказывая воздействие на ферменты. Так же к ультрамикроэлементам относят платину и цезий . Некоторые к этой группе относят и селен, при его недостатке развиваются раковые заболевания. Функции ультрамикроэлементов еще мало понятны.

Молекулярный состав клетки

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Химический состав клетки" в других словарях:

    Клетки - получить на Академике рабочий купон на скидку Галерея Косметики или выгодно клетки купить с бесплатной доставкой на распродаже в Галерея Косметики

    Общая схема строения бактериальной клетки показана на рисунке 2. Внутренняя организация бактериальной клетки сложна. Каждая систематическая группа микроорганизмов имеет свои специфические особенности строения. Клеточная стенка.… … Биологическая энциклопедия

    Своеобразие внутриклеточного строения красных водорослей складывается как из особенностей обычных клеточных компонентов, так и из наличия специфических внутриклеточных включений. Клеточные оболочки. В клеточных оболочках красных… … Биологическая энциклопедия

    - (Argentum, argent, Silber), хим. знак Ag. С. принадлежит к числу металлов, известных человеку еще в глубокой древности. В природе оно встречается как в самородном состоянии, так и в виде соединений с другими телами (с серой, напр. Ag 2S… …

    - (Argentum, argent, Silber), хим. знак Ag. С. принадлежит к числу металлов, известных человеку еще в глубокой древности. В природе оно встречается как в самородном состоянии, так и в виде соединений с другими телами (с серой, напр. Ag2S серебряный … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    У этого термина существуют и другие значения, см. Клетка (значения). Клетки крови человека (РЭМ) … Википедия

    Термин Биология был предложен выдающимся французким естествоиспытателем и эволюционистом Жаном Батистом Ламарком в 1802 году для обозначения науки о жизни как особым явлении природы. Сегодня биология представляет собой комплекс наук, изучающих… … Википедия

    Клетка элементарная единица строения и жизнедеятельности всех живых организмов (кроме вирусов, о которых нередко говорят как о неклеточных формах жизни), обладающая собственным обменом веществ, способная к самостоятельному существованию,… … Википедия

    - (цито + химия) раздел цитологии, изучающий химический состав клетки и ее компонентов, а также обменные процессы и химические реакции, которые лежат в основе жизнедеятельности клетки … Большой медицинский словарь

Сегодня мы рассмотрим клетку и содержащиеся в ней микроэлементы. Процентное содержание в клетке также будет нами подробно описано. Для начала поговорим о самом понятии «клетка».

Все, что нас окружает и сами мы - это своеобразный конструктор. Все состоит из мельчайших частиц, которые невозможно увидеть без специального оборудования под названием Микроскоп. Клетка - это полость, внутри которой водный раствор химических веществ, окружена она мембраной. Перед тем, как нами будут рассмотрены микроэлементы (процентное содержание в клетке и другие вопросы), необходимо понимать: клетка способна выжить самостоятельно и обладает рядом особенностей:

  • обмен веществ;
  • самовоспроизводство и так далее.

Последнее, что стоит упомянуть: цитология занимается изучением элементарных структурных элементов, то есть клеток.

Атомный состав

В периодической системе Дмитрия Ивановича Менделеева существует более ста элементом, а в человеческой клетке содержится более половины из них. Кроме этого, порядка 20 из этих элементов являются необходимыми для жизнедеятельности организма, их можно обнаружить практически во всех ее типах. Наш основной вопрос - это микроэлементы, процентное содержание в клетке. Но, необходимо знать и то, что элементы по их процентному содержанию в клетке могут делиться на классы:

  • макроэлементы;
  • микроэлементы;
  • ультрамикроэлементы.

Если взять все микроэлементы, то их процентное содержание в общей сумме не превышает трех процентов. К данным элементам можно отнести следующие:

  • магний;
  • хлор;
  • натрий;
  • калий;
  • кальций;
  • железо;
  • сера;
  • фосфор.

Как видите, их всего восемь, по сравнению с макроэлементами, которых насчитывается всего 4, а их общее процентное содержание превышает показатель 90. К группе ультрамикроэлементов относится множество элементов, а их общее процентное содержание не превышает 0,1.

Микроэлементы

Сейчас рассмотрим микроэлементы.

Процентное содержание в клетке микроэлементов следующее:

Как видите, эти цифры очень малы. В таблице мы рассмотрели процентное содержание в клетке микроэлементов, но какова их функция. Некоторые из элементов мы выделили отдельно, а сейчас кратко об остальных. И так, натрий выполняет несколько функций, среди которых:

  • обеспечение нормального ритма сердечных сокращений;
  • создание мембранного потенциала клетки;
  • с помощью данного элемента происходит проведение нервных импульсов;
  • поддержание водно-солевого баланса.

Процентное содержание в клетке микроэлементов (калий, сера и хлор) составляет менее 1 процента. Тем не менее, данные элементы выполняют множество необходимых функций:

  • калий - это основной катион, он, так же как и натрий, обеспечивает нормальную сердечную работу, оказывает помощь при синтезе белка;
  • сера - это составляющий элемент аминокислот, витамина В 1 и других ферментов;
  • хлор - это внеклеточный анион, входит в состав кислоты желудочного сока.

Магний

Мы рассмотрели все микроэлементы. Процентное содержание в клетке так же представлено в таблице выше. Но зачем нужен магний, и какие функции он выполняет? С этим мы сейчас и разберемся.

Мы его можем найти практически во всех клетках человека. Почему? Именно магний принимает участие в большинстве биохимических реакций, которых более 300. Первое основное предназначение - это участие в создании энергии, то есть АТФ. Это очень важно, так как АТФ выполняет роль энергетической станции как для клеток, так и для организма в общем.

Вторая функция - это помощь в усвоении некоторых веществ и синтезе белка. Третья функция - это регуляция в организме следующих элементов:

  • натрия;
  • кальция.

Это нужно для правильной работы сердца и нервной системы, предотвращения ишемической болезни сердца.

Кальций

Мы рассмотрели процентное содержание микроэлементов, из таблицы видно, что кальций составляет всего 0,02% всех элементов. Тем не менее, его значение также велико. И так:

  • кальций входит в состав стенок клетки;
  • входит в состав костной ткани и зубной эмали;
  • кальций способен активировать свертывание крови;
  • входит в состав раковин множества беспозвоночных;
  • служит посредником внутри клеток и регулирует различные процессы;
  • координирует сердцебиение;
  • регулирует кровяное давление;
  • участвует в работе нервной системы;
  • сохраняет кислотно-щелочное равновесие в нашем организме;
  • препятствует попаданию вирусов в клетки и так далее.

Железо

Этот элемент просто необходим для нормального процесса жизнедеятельности организма. Именно он помогает в транспортировке кислорода ко всем органам и тканям. Также этот элемент входит в состав ферментов, гемоглобина, миоглобина. Железо участвует в процессе дыхания и фотосинтеза у растений.

Фосфор

Элемент необходим для организма по многим причинам. Основные из них:

  • формирование зубов;
  • формирование костей;
  • входит в состав множества ферментов;
  • участвует в регенерации клеток и тканей;
  • производство АТФ-молекул, необходимых хранилищ энергии для организма;
  • помощь в функционировании почек;
  • регуляция мышечных сокращений.

Цитология. Изучением клетки занимается цитология (от греч. цитос – клетка и логос – наука). Изучается строение клеток, строение и функции клеточных органоидов, процессы жизнедеятельности, протекающие в клетке. Каждая клетка проявляет все свойства живого – обмен веществ, раздражимость, развитие и размножение, является элементарной (наименьшей) единицей строения. Изучение клетки логично начать с изучения химического состава клетки.

Химический состав клеток.

Все клетки, независимо от уровня организации, сходны по химическому составу. В живых организмах обнаружено 86 химических элементов периодической системы Д.И.Менделеева. Для 25 элементов известны функции, которые они выполняют в клетке. Эти элементы называются биогенными . По количественному содержанию в живом веществе элементы делятся на три категории:

Макроэлементы , элементы, концентрация которых превышает 0,001%. Они составляют основную массу живого вещества клетки (около 99%). Макроэлементы делят на элементы 1 и 2 группы. Элементы 1-ой группы – C, N, H, O (на их долю приходится 98% от всех элементов). Элементы 2-ой группы – K , Na , Ca , Mg , S , P , Cl , Fe (1,9%).

Микроэлементы (Zn, Mn, Cu, Co, Mo, и многие другие), доля которых составляет от 0,001% до 0,000001%. Микроэлементы входят в состав биологически активных веществ – ферментов, витаминов и гормонов.

Ультрамикроэлементы (Hg, Au, U, Ra и др.), концентрация которых не превышает 0,000001%. Роль большинства элементов этой группы до сих пор не выяснена.

Макро- и микроэлементы присутствуют в живой материи в виде разнообразных химических соединений, которые подразделяются на неорганические и органические вещества.

К неорганическим веществам относятся: вода и минеральные вещества. К органическим веществам относятся: белки, жиры, углеводы, нуклеиновые кислоты, АТФ и другие низкомолекулярные органические вещества. Процентное соотношение указано в таблице 1.


Неорганические вещества клетки . Вода .

Вода – самое распространенное в живых организмах неорганическое соединение. Ее содержание колеблется в широких пределах: в клетках эмали зубов вода составляет по массе около 10%, а в клетках развивающегося зародыша – более 90%.

Без воды жизнь невозможна. Она не только обязательный компонент живых клеток, но и среда обитания организмов. Биологическое значение воды основано на ее химических и физических свойствах. Химические и физические свойства воды необычны. Они объясняются, прежде всего, малыми размерами молекул воды, их полярностью и способностью соединяться друг с другом водородными связями.

В молекуле воды один атом кислорода ковалентно связан с двумя атомами водорода. Молекула полярна: кислородный атом несет частичный отрицательный заряд, а два водородных – частично положительные заряды. Это делает молекулу воды диполем. Поэтому при взаимодействии молекул воды друг с другом между ними устанавливаются водородные связи. Они слабее ковалентной, но, поскольку каждая молекула воды способна образовывать 4 водородные связи, они существенно влияют на физические свойства воды. Большая теплоемкость, теплота плавления и теплота парообразования объясняются тем, что большая часть поглощаемого водой тепла расходуется на разрыв водородных связей между ее молекулами. Вода обладает высокой теплопроводностью, благодаря чему в различных участках клетки поддерживается одинаковая температура. Вода практически не сжимается, прозрачна в видимом участке спектра. Наконец, вода – единственное вещество, плотность которого в жидком состоянии больше, чем в твердом.

Рис. . Вода. Значение воды.

Вода – хороший растворитель ионных (полярных) соединений, а также некоторых не ионных, в молекуле которых присутствуют заряженные (полярные) группы. Если энергия притяжения молекул воды к молекулам какого-либо вещества больше, чем энергия притяжения между молекулами вещества, то молекулы гидратируются и вещество растворяется. По отношению к воде различают гидрофильные вещества – вещества, хорошо растворимые в воде и гидрофобные вещества – вещества, практически нерастворимые в воде. Есть органические молекулы, у которых один участок – гидрофилен, другой – гидрофобен. Такие молекулы называют амфипатическими , к ним относятся, например, фосфолипиды, образующие основу биологических мембран.

Вода является непосредственным участником многих химических реакций (гиролитическое расщепление белков, углеводов, жиров и др.), необходима как метаболит для реакций фотосинтеза.

Большинство биохимических реакций может идти только в водном растворе; многие вещества поступают в клетку и выводятся из нее в водном растворе. Благодаря большой теплоте испарения воды, происходит охлаждение организма.

Максимальная плотность воды при +4°С, при понижении температуры вода поднимается вверх, а так как плотность льда меньше плотности воды, то лед образуется на поверхности, поэтому при замерзании водоемов подо льдом остается жизненное пространство для водных организмов.

Благодаря силам когезии (электростатическому взаимодействию молекул воды, водородным связям) и адгезии (взаимодействию с окружающими ее стенками) вода обладает свойством подниматься по капиллярам – один из факторов, обеспечивающих движение воды в сосудах растений.

Несжимаемость воды определяет напряженное состояние клеточных стенок (тургор ), а также выполняет опорную функцию (гидростатический скелет, например, у круглых червей).

Итак, значение воды для организма заключается в следующем:

  1. Является средой обитания для многих организмов;
  2. Является основой внутренней и внутриклеточной среды;
  3. Обеспечивает транспорт веществ;
  4. Обеспечивает поддержание пространственной структуры растворенных в ней молекул (гидратирует полярные молекулы, окружает неполярные молекулы, способствуя их слипанию);
  5. Служит растворителем и средой для диффузии;
  6. Участвует в реакциях фотосинтеза и гидролиза;
  7. При испарении участвует в терморегуляции организма;
  8. Обеспечивает равномерное распределение тепла в организме;
  9. Максимальная плотность воды при +4°С, поэтому лед образуется на поверхности воды.

Минеральные вещества .

Минеральные вещества клетки в основном представлены солями, которые диссоциируют на анионы и катионы, некоторые используются в неионизированной форме (Fe, Mg, Cu, Co, Ni и др.)

Для процессов жизнедеятельности клетки наиболее важны катионы Na + , Ca 2+ , Mg 2+ , анионы HPO 4 2- , Cl - , HCO 3 - . Концентрации ионов в клетке и среде ее обитания, как правило, различны. В нервных и мышечных клетках концентрация К + внутри клетки в 30-40 раз больше, чем вне клетки; концентрация Na + вне клетки в 10-12 раз больше, нежели в клетке. Ионов Сl - вне клетки в 30-50 раз больше, чем внутри клетки. Существует ряд механизмов, позволяющих клетке поддерживать определенное соотношение ионов в протопласте и внешней среде.

Табл. 1. Важнейшие химические элементы

Химический элемент

Вещества, в которых химический элемент содержится

Процессы, в которых химический элемент участвует

Углерод, водород, кислород, азот

Белки, нуклеиновые кислоты, липиды, углеводы и др. органические вещества

Синтез органических веществ и весь комплекс функций, осуществляемых этими органическими веществами

Калий, натрий

Обеспечивают функции мембран, в частности, поддерживают электрический потенциал клеточной мембраны, работу Na + /Ka + -насоса, проведение нервных импульсов, анионный, катионный и осмотический балансы

Фосфат кальция, карбонат кальция

Пектат кальция

Участвует в процессе свертывания крови, сокращения мышц, входит в состав костной ткани, зубной эмали, раковин моллюсков

Формирование срединной пластинки и клеточной стенки у растений

Хлорофилл

Фотосинтез

Формирование пространственной структуры белка за счет образования дисульфидных мостиков

Нуклеиновые кислоты, АТФ

Синтез нуклеиновых кислот, фосфорилирование белков (их активирование)

Поддерживает электрический потенциал клеточной мембраны, работу Na + /Ka + -насоса, проведение нервных импульсов, анионный, катионный и осмотический балансы

Активизирует пищеварительные ферменты желудочного сока

Гемоглобин

Цитохромы

Транспорт кислорода

Перенос электронов при фотосинтезе и дыхании

Марганец

Декарбоксилазы, дегидрогеназы

Окисление жирных кислот, участие в процессах дыхания и фотосинтеза

Гемоцианин

Тирозиназа

Транспорт кислорода у некоторых беспозвоночных

Образование меланина

Витамин В 12

Формирование эритроцитов

Входит в состав более 100 ферментов: Алькогольдегидрогеназа, карбоангидраза

Анаэробное дыхание у растений

Транспорт СО 2 у позвоночных

Фторид кальция

Костная ткань, зубная эмаль

Тироксин

Регуляция основного обмена

Молибден

Нитрогеназа

Фиксация азота

Различные ионы принимают участие во многих процессах жизнедеятельности клетки: катионы К + , Na + , Ca 2+ обеспечивают раздражимость живых организмов; катионы Mg 2+ , Mn 2+ , Zn 2+ , Ca 2+ и др. необходимы для нормального функционирования многих ферментов; образование углеводов в процессе фотосинтеза невозможно без Mg 2+ (составная часть хлорофилла).

От концентрации солей внутри клетки зависят ее буферные свойства . Буферностью называют способность клетки поддерживать слабощелочную реакцию своего содержимого на постоянном уровне (рН около 7,4). Внутри клетки буферность обеспечивается главным образом анионами H 2 PO 4 - и НРО 4 2- . Во внеклеточной жидкости и в крови роль буфера играют Н 2 СО 3 и НСО 3 - .

Фосфатная буферная система:

Низкий pH Высокий pH

НРО 4 2- + Н + H 2 PO 4 -

Гидрофосфат – ион Дигидрофосфат – ион

Бикарбонатная буферная система:

Низкий pH Высокий pH

НСО 3 - + Н + H 2 СO 3

Гидрокарбонат – ион Угольная кислота

Некоторые неорганические вещества содержатся в клетке не только в растворенном, но и в твердом состоянии. Например, Са и Р содержатся в костной ткани, в раковинах моллюсков в виде двойных углекислых и фосфорнокислых солей.

Ключевые термины и понятия

1. Общая биология. 2. Тропизмы, таксисы, рефлексы. 2. Биогенные элементы. 3. Макроэлементы. 4. Элементы 1 и 2 групп. 5. Микро- и ультрамикроэлементы. 6. Гидрофильные и гидрофобные вещества. 7. Амфипатические вещества. 8. Гидролиз. 9. Гидратация. 10. Буферность.

Основные вопросы для повторения

  1. Строение молекулы воды и ее свойства.
  2. Значение воды.
  3. Процентное соотношение органических веществ в клетке.
  4. Важнейшие катионы клетки и их концентрация в нервных и мышечных клетках.
  5. Реакция фосфатной буферной системы при понижении рН.
  6. Реакция карбонатной буферной системы при повышении рН.
Loading...Loading...